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ABSTRACT
In modern distributed computing systems, unpredictable and un-

reliable infrastructures result in high variability of computing re-

sources. Meanwhile, there is significantly increasing demand for

timely and event-driven services with deadline constraints. Moti-

vated by measurements over Amazon EC2 clusters, we consider

a two-state Markov model for variability of computing speed in

cloud networks. In this model, each worker can be either in a good

state or a bad state in terms of the computation speed, and the tran-

sition between these states is modeled as a Markov chain which is

unknown to the scheduler. We then consider a Coded Computing
framework, in which the data is possibly encoded and stored at

the worker nodes in order to provide robustness against nodes

that may be in a bad state. With timely computation requests sub-

mitted to the system with computation deadlines, our goal is to

design the optimal computation-load allocation scheme and the

optimal data encoding scheme that maximize the timely compu-

tation throughput (i.e, the average number of computation tasks

that are accomplished before their deadline). Our main result is the

development of a dynamic computation strategy called Lagrange
Estimate-and-Allocate (LEA) strategy, which achieves the optimal

timely computation throughput. It is shown that compared to the

static allocation strategy, LEA improves the timely computation

throughput by 1.4× ∼ 17.5× in various scenarios via simulations

and by 1.27× ∼ 6.5× in experiments over Amazon EC2 clusters.

CCS CONCEPTS
• Computing methodologies → Distributed algorithms.

KEYWORDS
Distributed computing, Coded computing, Task scheduling, Com-

putation with deadline

ACM Reference Format:
Chien-Sheng Yang, Ramtin Pedarsani, and A. Salman Avestimehr. 2019.

Timely-Throughput Optimal Coded Computing over Cloud Networks. In

The Twentieth ACM International Symposium on Mobile Ad Hoc Networking
and Computing (Mobihoc ’19), July 2–5, 2019, Catania, Italy. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3323679.3326528

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Mobihoc ’19, July 2–5, 2019, Catania, Italy
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6764-6/19/07. . . $15.00

https://doi.org/10.1145/3323679.3326528

1 INTRODUCTION
Large-scale distributed computing systems can substantially suffer

from unpredictable and unreliable computing infrastructure which

can result in high variability of computing resources, i.e., speed of

the computing resources vary over time. The speed variation has

several causes including hardware failure, co-location of computa-

tion tasks, communication bottlenecks, etc. [1, 32] This variability

is further amplified in computing clusters, such as Amazon EC2,

due to the utilization of credit-based computing policy, in which

the most commonly used T2 and T3 instances can operate signifi-

cantly above a baseline level of CPU performance (approximately

10 times faster as shown in Fig. 1) by consuming CPU credits that

are allocated periodically to the nodes. At the same time, there is

a significant increase in utilizing the cloud for event-driven and

time-sensitive computations (e.g., IoT applications and cognitive

services), in which the users increasingly demand timely services

with deadline constraints, i.e., computations of requests have to be

finished within specified deadlines.

Our goal in this paper is to study the problem of computation

allocation over cloud networks with particular focus on variability

of computing resources and timely computation tasks. From the

measurements of nodes’ computation speeds over Amazon EC2

clusters, shown in Fig. 1, we observe that when a node is slow (fast),

it is more likely that it continues to be slow (fast) in the following

rounds of computation, which implies temporal correlation of com-

putation speeds. Thus, to capture this phenomenon, we consider

a two-state Markov model for variability of computing speed in

cloud networks. In this model, each worker can be either in a good

state or a bad state in terms of the computation speed, and the tran-

sition between these states is modeled as a Markov chain which is

unknown to the scheduler.

Furthermore, we consider a Coded Computing framework, in

which the data is possibly encoded and stored at the worker nodes

in order to provide robustness against nodes that may be in a

bad state. The key idea of coded computing is to encode the data

and design each worker’s computation task such that the fastest

responses of any k workers out of total of n workers suffice to

complete the distributed computation, similar to classical coding

theory where receiving any k symbols out of n transmitted symbols

enables the receiver to decode the sent message.

We consider a dynamic computation model, where a sequence

of functions needs to be computed over the (encoded) data that

is distributedly stored at the nodes. More precisely, in an online

manner, timely computation requests with given deadlines are

submitted to the system, i.e., each computation has to be finished

within the given deadline. Our goal is then to design the optimal

computation-load allocation strategy and the optimal data encoding
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Figure 1: Empirical measurement of speed variation of a
credit-based t2.micro instance in Amazon EC2 in which we
keep assigning computation (e.g., a matrix multiplication)
to the instance and measure the finish times: A two-state
Markov model.

scheme that maximize the timely computation throughput (i.e, the

average number of computation tasks that are accomplished before

their deadline).
1

One significant challenge in this problem is the joint design of

(1) a data encoding scheme to provide robustness against straggling

workers; and (2) an adaptive computation load allocation strategy

for the workers based on the history of previous computation times.

In particular, the state of the computing nodes and the transition

probabilities of the Markov model are unknown to the scheduler.

We note that to find the optimal computation strategy, one has to

solve a complex optimization which in general requires searching

over all possible load allocations, even if the transition probabilities

of Markov model are known to the master. Thus, it is not clear how

one allocates the computation loads efficiently and what computa-

tion strategy is optimal, especially for the network with unknown

Markov model.

As the main contributions of the paper, we propose a dynamic

computation strategy called Lagrange Estimate-and-Allocate (LEA)
strategy, and show that it achieves the optimal timely computa-

tion throughput. Utilizing Lagrange coding scheme for data en-

coding [30], the LEA strategy estimates the transition probabilities

by observing the past events at each time step, and then assigns

computation loads based on the estimated probabilities. Moreover,

we also show that finding the optimal load assignment using LEA

can be done efficiently instead of searching over all possible load

allocations which is computationally infeasible to implement.

To prove the optimality of the LEA strategy, we first provide

an upper bound for the timely computation throughput by maxi-

mizing the success probability of each round when the transition

probabilities are known to master. For any fixed load assignment,

we show that using Lagrange coding scheme proposed in [30] has

the highest success probability of each round. Then, we show that

the success probability using LEA converges to the optimal success

probability. By the Strong Law of Large Numbers (SLLN), Ergodic

theorem and a coupling argument, we finally prove that timely

1
Our metric of timely computation throughput is motivated by timely throughput

metric, introduced in [13], which measures the average number of packets that are

delivered by their deadline in a communication network.

computation throughput achieved by the LEA strategy is equal to

the optimal timely computation throughput, i.e., LEA is optimal.

In addition to proving the optimality of LEA, we carry out nu-

merical studies and experiments over Amazon EC2 clusters. We

compare the proposed LEA strategy with a static load allocation

strategy for the benchmark. In our numerical analysis, compared

to the static computation strategy, the LEA strategy improves the

timely computation throughput by 1.38× ∼ 17.5×. In experiments

over Amazon EC2 clusters, the LEA strategy increases the timely

computation throughput by 1.27× ∼ 6.5×.

1.1 Related Prior Work
Wedivide the literature review to twomain lines of work: task sched-

uling over cloud networks, and coded computing in distributed

systems.

In the dynamic task scheduling problem, jobs arrive to the net-

work according to a stochastic process, and get scheduled dynam-

ically over time. In many works in the literature, the tasks have

dedicated servers for processing, and the goal is to establish sta-

bility conditions for the network [3]. Given the stability results,

the next natural goal is to compute the expected completion times

of jobs or delay distributions. However, few analytical results are

available for characterizing the delay performance, except for the

simplest models. When the tasks do not have dedicated servers,

one aims to find a throughput-optimal scheduling policy (see e.g.

[10]), i.e. a policy that stabilizes the network, whenever it can be

stabilized. For example, Max-Weight scheduling, first proposed in

[6, 28], is known to be throughput-optimal for wireless networks,

flexible queueing networks [9, 22, 24], data centers networks [21]

and dispersed computing networks [29]. Moreover, there have been

many works which focus on task scheduling problem with deadline

constraints over cloud networks (see e.g. [2, 12]).

Coded computing broadly refers to a family of techniques that

utilize coding to inject computation redundancy in order to alleviate

the various issues that arise in large-scale distributed computing.

In the past few years, coded computing has a tremendous success

in various problems, such as straggler mitigation and bandwidth

reduction (e.g., [8, 17–20, 25, 27, 31]). Coded computing has also

been expanded in various directions, such as heterogeneous net-

works (e.g., [26]), partial stragglers (e.g., [11]), secure and private

computing (e.g., [4, 5, 30]) and distributed optimization (e.g., [14]).

So far, research in coded computing has focused on develop-

ing frameworks for one round of computation instead of consid-

ering network dynamics for analyzing long-run performance of

distributed computing systems. In this paper, considering the dy-

namics of the network, we make substantial progress by combining

the ideas of coded computing with dynamic computation load allo-

cation over cloud networks, and developing Lagrange Estimate-and

Allocate strategy that can adaptively assign computation loads

to workers and essentially learn the unknown network dynamics.

Furthermore, we consider the metric "timely computation through-

put" which denotes the average number of successful completions

instead of the metric "timely throughput" which usually denotes

the average number of packets delivered successfully in network

scenarios (see e.g., [16]).
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Figure 2: Overview of dynamic load allocation over a coded
computing framework with timely computation requests.
In each round m, the goal is to compute the evaluations
f (X1), . . . , f (Xk ) by the deadline d using n workers.

2 SYSTEM MODEL
2.1 Computation Model
We consider a distributed computing problem, in which computa-

tion requests are submitted to a distributed computing system in

an online manner, and the computation is carried out in the system.

In particular, there is a fixed deadline for each computation round,

i.e., each computation has to be finished within the given deadline.

As shown in Fig. 2, the considered system is composed of a

master node and n worker nodes. There is also a dataset X which

is divided to X1,X2, . . . ,Xk . Specifically, each X j is an element in

a vector space V over a field F. In each roundm (or time slot in a

discrete-time system), a computation request with a function fm
is submitted to the system, where the function fm is an arbitrary

multivariate polynomial with vector coefficients having degree

deg(f ). We denote by d the deadline of each computation request

which is smaller than or equal to the duration of each round. In

such distributed computing system, we are interested in computing

the evaluations fm (X1), fm (X2), . . . , fm (Xk ) in each round m by

the deadline d .
Prior to the computation, the master first encodes the dataset

X1,X2, . . . ,Xk to X̃1, X̃2, . . . , X̃nr via a set ofnr encoding functions
®д = (д1,д2, . . . ,дnr ), where encoded data X̃v ≜ дv (X1, . . . ,Xk ) is
determined by the encoding function дv : V → U. Each worker

i stores r encoded data chunks X̃(i−1)r+1, X̃(i−1)r+2 ,. . . , X̃ir lo-

cally. In each round m, each worker evaluates certain subset of

fm (X̃(i−1)r+1), fm (X̃(i−1)r+2), . . . , fm (X̃ir ) which is determined by

the master.

Given a function fm in round m, the master assigns the com-

putations to each worker. More specifically, we define
®ℓm =

(ℓm,1, ℓm,2, . . . , ℓm,n ) to be the load allocation vector, in which

ℓm,i denotes the number of polynomial or function evaluations

computed by worker i in roundm. Each worker i computes ℓm,i
evaluations of function fm over the stored data without specified

order, and returns all the results back to the master upon the com-

pletion of all assigned computations. The master node aggregates

the results from the worker nodes until it receives a decodable set of
computations and recovers fm (X1), fm (X2), . . . , fm (Xk ). We say a

set of computations is decodable if the evaluations fm (X1), fm (X2),

. . . , fm (Xk ) can be obtained by computing decoding functions over

received results. In each round, the goal of the master is to receive

a decodable set of computations within the given deadline d .
Let us illustrate the model through a simple example.

Example. In each roundm, we consider a problem of evaluating

a linear function fm (X j ) = X j ®wm over n = 3 workers, where the

input dataset X is divided to X1, X2 and ®wm is the input vector.

One possible coding scheme is to encode X1 and X2 to X̃1 = X1,

X̃2 = X2 and X̃3 = X1+X2. Each worker i stores r = 1 encoded data

chunk X̃i . If the load allocation vector
®ℓm = (1, 1, 1) is used by the

master, then each worker i computes X̃i ®wm and sends the result

back the master upon its completion. The set {X̃1 ®wm , X̃3 ®wm } is

one of decodable sets since the master can obtain X1 ®wm and X2 ®wm
by computing X1 ®wm = X̃1 ®wm and X2 ®wm = X̃3 ®wm − X̃1 ®wm .

We note that the considered computation model naturally ap-

pears in many gradient computing problems. For example, in linear

regression problems, we want to compute fm (X j ) = X⊤
j (X j ®wm − ®y)

which is the gradient of the quadratic loss function
1

2
(X⊤

j ®wm − ®y)2

with respect to the weight vector ®wm in roundm.

2.2 Network Model
Motivated by the measurements over Amazon EC2 clusters, shown

in Fig. 1, we assume that each worker has two different states for

computing, good state and bad state. We denote µд as the computing

speed (evaluations per second) in the good state, and denote µb as

the computing speed in the bad state. We assume that the comput-

ing speeds µд and µb are known to the master. Note that given a

worker’s state, its computation time (per evaluation) is determin-

istic. We denote µm,i as computing speed of worker i in roundm.

And, we denote ®µm = (µm,1, µm,2, . . . , µm,n ) as computing speed

vector in roundm. For each worker i , we model the state transitions

as a stationary Markov process Si [1], Si [2], . . . , with the transition

matrix defined as follows:

Pi =

[
pд→д,i 1 − pд→д,i

1 − pb→b,i pb→b,i

]
(1)

where pд→д,i is the transition probability of worker i going to

the good state from the good state, and pb→b,i is the transition

probability of worker i going to the bad state from the bad state. We

assume that the Markov processes of different workers are mutually

independent. Prior to the computation, we assume the initial state

of worker i is given by the stationary distribution of Markov chain

(Si [1], Si [2], . . . ). We assume that the transition probabilities and

current state of each worker are unknown to the master before the

master assigns the computations to each worker.

2.3 Problem Formulation
Given the computation deadline d , we denote Nm (d) as an indicator

representing whether the computation is finished by deadline d ,
i.e., Nm (d) = 1 if the computation is finished by time d in round

m, and Nm (d) = 0 otherwise. We denote η = (®д, { ®ℓm }∞m=1) as the

computation strategy. Also, we denote the set of all computation

strategies as Γ.

303



Mobihoc ’19, July 2–5, 2019, Catania, Italy Chien-Sheng Yang, Ramtin Pedarsani, and A. Salman Avestimehr

Definition 2.1 (Timely Computation Throughput). Given the com-

putation deadline d , using computation strategy η, the timely com-

putation throughput, denoted by R(d,η), is defined as follows:

R(d,η) = lim

M→∞

∑M
m=1 Nm (d)

M
. (2)

Based on the above definitions, our problem is now formulated

as the following.

Problem Statement. Consider a distributed computing system
consisting of computation and network models as defined in Subsec-
tions 2.1 and 2.2. Our goal is to find an optimal computation strategy
achieving optimal timely computation throughput, denoted by R∗(d)
which is defined as follows:

R∗(d) = sup

η∈Γ
R(d,η) (3)

3 LAGRANGE ESTIMATE-AND-ALLOCATE
(LEA) STRATEGY

In this section, we propose a dynamic computation strategy called

Lagrange Estimate-and-Allocate (LEA) strategy, which is composed

of Lagrange coding scheme for data encoding and Estimate-and-
Allocate (EA) algorithm for allocating loads to the workers adap-

tively by observing the history of computation times. In each round,

the EA algorithm first assigns computation loads by maximizing

the estimated success probability based on the estimated transi-

tion probabilities of the underlying Markov chain (and based on

that the previous state of the workers). After receiving the results,

the EA algorithm updates the estimated transition probabilities by

observing the computation times in the past events.

3.1 Data Encoding in LEA
For data encoding, we leverage a linear coding scheme called La-

grange coding scheme which is proposed in [30]. We start with an

illustrative example.

We first consider the scenario where nr ≥ k deg(f ) − 1. In each

roundm, we consider a problem of evaluating a quadratic function

fm (X j )= X⊤
j X j ®wm (deg(f )=2) overn = 3workers, where the input

dataset X is divided to X1,X2. Each worker stores r = 2 encoded

data chunks (nr = 6 > k deg(f ) − 1 = 3). We define u as follows:

u(z) ≜ X1

z − 1

0 − 1

+ X2

z − 0

1 − 0

= z(X2 − X1) + X1, (4)

in which u(0) = X1 and u(1) = X2. Then, we encode X1 and X2

to X̃i = u(i − 1), i.e., X̃1 = X1, X̃2 = X2, X̃3 = −X1 + 2X2, X̃4 =

−2X1 + 3X2, X̃5 = −3X1 + 4X2 and X̃6 = −4X1 + 5X2. Each worker

i stores X̃2i−1 and X̃2i locally.

We now consider the scenario where nr < k deg(f ) − 1. We

consider the same problem in the previous scenario, but the there

is larger input dataset X which is divided to X1,X2,X3 and X4

(nr = 6 < k deg(f )−1 = 7). We encodeX1 andX2 using a repetition

coding design such that X̃1 = X1, X̃2 = X2, X̃3 = X3, X̃4 = X4,

X̃5 = X1 and X̃6 = X2. Each worker i stores X̃2i−1 and X̃2i locally.

Formally, we describe Lagrange coding scheme as follows:

(1) nr ≥ k deg(f ) − 1: We first select k distinct elements

β1, β2, . . . , βk from F, and let u be the respective Lagrange interpo-
lation polynomial

u(z) ≜
k∑
j=1

X j
∏

l ∈[k ]\{j }

z − βl
βj − βl

. (5)

where u : F → V is a polynomial of degree k − 1 such that

u(βj ) = X j . To encode the input X1,X2, . . . ,Xk , we select nr dis-
tinct elements α1,α2, . . . ,αnr from F, and encode X1,X2, . . . ,Xk
to X̃v = u(αv ) for all v ∈ [nr ], i.e.,

X̃v = дv (X ) = u(αv ) ≜
k∑
j=1

X j
∏

l ∈[k ]\{j }

αv − βl
βj − βl

. (6)

Each worker i stores X̃(i−1)r+1, X̃(i−1)r+2, . . . , X̃ir locally.
(2) nr < k deg(f ) − 1: We use a repetition coding design to encode

the inputX1,X2, . . . ,Xk . We replicate everyXi either ⌊
nr
k ⌋ or ⌈nrk ⌉

times such that the number of total encoded data chunks isnr . Then,
we obtain the encoded data X̃1, X̃2, . . . , X̃nr . Each worker picks r
of the encoded data X̃1, X̃2, . . . , X̃nr to be stored locally.

We note that decoding and encoding in Lagrange coding scheme

relies on polynomial interpolation and evaluation which can be

done efficiently.

3.2 Load Allocation in LEA
Before introducing the EA algorithm, we first define the following

terms. For each worker i , we denote Cд→д,i (m) as the number of

times that event "good state to good state" happened up to round

m. Similarly, Cд→b,i (m), Cb→д,i (m) and Cb→b,i (m) are for events

"good state to bad state", "bad state to good state" and "bad state

to bad state" respectively. For worker i , we denote p̂д→д,i (m) and

p̂b→b,i (m) as the estimated transition probabilities after the first

m − 1 rounds of computations. For worker i , we denote p̂д,i (m) and

p̂b,i (m) as the estimated probabilities being in the good state and

the bad state in roundm respectively. Without loss of generality,

we assume that p̂д,1(m) ≥ p̂д,2(m) ≥ · · · ≥ p̂д,n (m). We also define

ℓb ≜ µbd and ℓд ≜ min(µдd, r ).
Now, we formally describe the EA algorithm. In each roundm,

the EA algorithm has the following 4 phases:

(1) Load Assignment Phase: The master maximizes the esti-

mated success probability in roundm based on the the estimated

probabilities p̂д,i (m) and p̂b,i (m). To do so, the master finds i∗m
(1 ≤ i∗m ≤ n) maximizing the estimated success probability func-

tion defined as follows
2
:

ˆPm (ĩ) = 0 if K∗ > ĩℓд + (n − ĩ)ℓb , (7)

otherwise

ˆPm (ĩ) =
ĩ∑

l=w (ĩ)

∑
G:G⊆[ĩ], |G |=l

∏
i ∈G

p̂д,i (m)
∏

i ∈[ĩ]\G

p̂b,i (m) (8)

wherew(ĩ) ≜ ⌈
K ∗−(n−ĩ)ℓb

ℓд
⌉ and K∗

is defined as follows:

K∗ =

{
(k − 1)deg(f ) + 1 if nr ≥ k deg(f ) − 1

nr − ⌊ nrk ⌋ + 1 otherwise.
(9)

2
Note that we only consider the case: K ∗ ≥ nµbd = nℓb , otherwise the computation

can be always finished in time d which is trivial.
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Note that equations (7) and (8) define the estimated success prob-

ability which is the function of ĩ (number of workers assigned to

compute ℓд evaluations). The intuition behind equation (7) is that

if total load assigned to all the workers is smaller than the optimal

recovery threshold, the probability of success is zero. Based on the

estimated probabilities p̂д and p̂b , equation (8) gives us the esti-

mated success probability by summing the probabilities of events

which have enough workers in good state leading to successful

completion of the computation before the deadline. Also, K∗
de-

fined in (9) is the optimal recovery threshold using Lagrange coding

scheme [30] which guarantees that the evaluations can be recov-

ered when the master receives any K∗
results from the workers.

Thus, i∗m = argmax
ˆPm (ĩ). Then, the master does assignment by

using the load allocation vector ℓm such that

ℓm,i =

{
ℓд , if 1 ≤ i ≤ i∗m
ℓb , otherwise.

(10)

In load assignment phase, the main idea is to select workers in

the order of the estimated probability being in the good state, and

assign more loads accordingly. Note that it is just a linear search in

load assignment phase which is computationally efficient.

(2) Local Computation Phase:Within each roundm of compu-

tation, each worker i receives function fm and load assignment ℓm,i
from the master. Then, each worker i computes evaluations of func-

tion fm over encoded data X̃(i−1)r+1, X̃(i−1)r+2, . . . , X̃(i−1)r+ℓm,i ,

i.e., fm (X̃(i−1)r+1), fm (X̃(i−1)r+2), . . . , fm (X̃(i−1)r+ℓm,i ). After the

computation, each worker sends all the computation results back

to the master upon its completion.

(3) Aggregation andObservation Phase: Having received the
fastest K∗

computation results from the workers, the master re-

covers the evaluations fm (X1), fm (X2), . . . , fm (Xk ) for the request
function fm . By observing whether the results are sent back or not,

the master checks which one of events "good state to good state",

"good state to bad state", "bad state to good state" and "bad state to

bad state" has happened in roundm for each worker i . Then, the
master obtains Cд→д,i (m), Cд→b,i (m), Cb→д,i (m) and Cb→b,i (m).

Note that the time that it takes for one worker’s result to be com-

pleted and sent back to the master actually indicates the (previous)

state of that worker, since the speeds are deterministic and the

computation time in a good state is less than the computation time

in a bad state.

(4) Update Phase: After aggregation and observation phase, the
master updates the estimated transition probabilities p̂д→д,i (m +
1) and p̂b→b,i (m + 1) for the round m + 1: p̂д→д,i (m + 1) =

Cд→д,i (m)

Cд→д,i (m)+Cд→b,i (m)
and p̂b→b,i (m + 1) =

Cb→b,i (m)

Cb→д,i (m)+Cb→b,i (m)
.

The master updates the estimated probabilities p̂д,i (m + 1) and

p̂b,i (m + 1). If worker i was in good state in roundm, p̂д,i (m + 1) =
p̂д→д,i (m+1), and p̂д,i (m+1) = 1−p̂b→b,i (m+1) otherwise. Then,
the computation goes to the roundm + 1.

4 UPPER BOUND ON THE TIMELY
COMPUTATION THROUGHPUT

In this section, we give an upper bound for the timely computation

throughput. The idea is to consider the case that the Markov model

of the network is known to the master and achieve the optimal

computation throughput for this case.

4.1 Optimal Success Probability of One Round
Computation

First, we consider one round of computation using a load alloca-

tion vector
®ℓ with a linear coding scheme ®д. Without knowing

computing speed vector ®µ, we denote T ( ®ℓ, ®д)(®µ) as the random vari-

able of finish time using
®ℓ and ®д. We define the success probability

as the probability that the computation is finished in time d , i.e.,

P(T ( ®ℓ, ®д) ≤ d) according to the distribution of ®µ.
For a coding scheme, we define recovery threshold which is for-

mally stated as follows:

Definition 4.1 (Recovery Threshold). For an integer k , a coding
scheme ®д is k-recoverable if the master can recover the required

function evaluations from any k of nr local computation results.

We define the recovery threshold of a coding scheme ®д, denoted by

K(®д), as the minimum number of k such that the coding scheme ®д
is k-recoverable.

Given a coding scheme ®д, we have the recovery threshold K(®д)
which is the minimum number of evaluations to be received in total

from the workers. Thus, we aim at finding a coding scheme and

a load allocation vector that maximizes the success probability by

solving the following optimization problem:

Maximize P(T ( ®ℓ, ®д) ≤ d) (11)

subject to

n∑
i=1
ℓi ≥ K(®д), (12)

0 ≤ ℓi ≤ r , ℓi ∈ Z,∀1 ≤ i ≤ n. (13)

In the following, we show that Lagrange coding scheme achieves

the highest success probability for any fixed load allocation vector.

Before proving the optimality of Lagrange coding scheme in terms

of success probability, we first define optimal recovery threshold as

follows:

Definition 4.2. Wedefine the optimal recovery threshold, denoted

by K∗
, as the minimum achievable recovery threshold. Specifically,

K∗ ≜ min

®д
K(®д). (14)

By [30], Lagrange coding scheme achieves the optimal recovery

threshold of evaluating a multivariate polynomial function f (total

degree deg(f )) on a dataset of k inputs, which is given by

K∗ = (k − 1)deg(f ) + 1 (15)

when nr ≥ k deg(f ) − 1, and

K∗ = nr − ⌊
nr

k
⌋ + 1 (16)

otherwise.

The following lemma shows that Lagrange coding scheme

achieves the highest success probability for any fixed load allo-

cation vector. It is intuitive that a coding scheme achieving smaller

recovery threshold should have higher success probability.
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Lemma 4.3. (Monotonicity) Consider an arbitrary load allocation
vector ®ℓ, for any coding schemes ®д1 and ®д2, such that K(®д1) ≤ K(®д2),
we have

P(T ( ®ℓ, ®д1) ≤ d) ≥ P(T ( ®ℓ, ®д2) ≤ d). (17)

The proof of the lemma 4.3 is provided in the Appendix A.

4.2 Load Allocation Problem
From Lemma 4.3, by fixing Lagrange coding scheme denoted by

®д∗, the optimization problem proposed in Subsection 4.1 can be

simplified to the optimization problem that only has load allocation

vector as variables. We now introduce an optimization problem

called Load Allocation Problem which is defined as follows:

Load Allocation Problem:

Maximize P(T ( ®ℓ, ®д∗) ≤ d) (18)

subject to

n∑
i=1
ℓi ≥ K∗, (19)

0 ≤ ℓi ≤ r , ℓi ∈ Z,∀1 ≤ i ≤ n. (20)

where K∗
is the optimal recovery threshold defined in (15) and (16).

Note that the proposed load allocation problem is a combinatorial

optimization problem that in general requires combinatorial search

over all possible allocations to maximize the success probability.

To show that load allocation problem can be solved efficiently,

we first present the following lemma whose proof is provided in

Appendix B.

Lemma 4.4. Given a deadline d , if a load allocation vector ®ℓ has

the success probability P(T ( ®ℓ, ®д∗)(®µ) ≤ d), then there exists a load

allocation vector ®ℓ
′ with success probability P(T ( ®ℓ

′
, ®д∗)(®µ) ≤ d) such

that P(T ( ®ℓ
′
, ®д∗)(®µ) ≤ d) ≥ P(T ( ®ℓ, ®д∗)(®µ) ≤ d) and ℓ

′

i ∈ {ℓд , ℓb } where
ℓд = min(µдd, r ) and ℓb = µbd .

By Lemma 4.4, we can focus on finding the optimal load allo-

cation vector by searching all
®ℓ satisfying that ℓi ∈ {ℓд , ℓb } for

all i . To find the optimal load allocation vector, we now consider

the load allocation vector characterized by the set Gд = {i : ℓi =
ℓд , 1 ≤ i ≤ n} which represents the set of workers that computes

ℓд evaluations locally. Once the set Gд has been determined, Gb
representing the set of workers that computes ℓb evaluations can

be defined as {i : i ∈ [n]\Gд}.

Since
ℓb
µi is always less than d , the workers in Gb will always

send the results back to the master in time d . Since the optimal

recovery threshold is K∗
using Lagrange coding scheme, the master

has to receive at least K∗ − |Gb |ℓb results from the workers in Gд
to recover the computation in time d . That is, there must be at

least ⌈
K ∗−|Gb |ℓb

ℓд
⌉ workers in the good state in set Gд . We define

a(Gд) ≜ ⌈
K ∗−(n−|Gд |)ℓb

ℓд
⌉ which denotes the minimum number of

workers in the good state in Gд to guarantee that the master can

recover the computation in time d .
Before writing the success probability as a function of Gд , we

first define the following terms. We define T (Gд )(®µ) as the random
variable denoting the finish time using the allocation vector char-

acterized by Gд . We denote pд,i as the probability that worker i is

in the good state and pb,i as the probability that worker i is in the

bad state. Also, we denote the random variable that represents the

number of workers being in good state in set G as Q(G).
Using the load allocation vector characterized by Gд , we can

find the success probability which is a function of Gд as follows:

(1) a(Gд) > |Gд |: In this case, the master needs at least a(Gд)
workers being in good state which is greater than |Gд |. It implies

that P(T (Gд )(®µ) ≤ d) = 0.

(2) 0 ≤ a(Gд) ≤ |Gд |: In this case, we have

P(T (Gд )(®µ) ≤ d) = P(Q(Gд) ≥ a(Gд)) =

|Gд |∑
l=a(Gд )

P(Q(Gд) = l)

=

|Gд |∑
l=a(Gд )

∑
G:G⊆Gд, |G |=l

∏
i ∈G

pд,i
∏

i ∈Gд\G

pb,i . (21)

Therefore, our goal is to find the optimal set G∗
д characterizing

the optimal load allocation vector which maximizes the success

probability over all possible sets Gд ⊆ [n]. The complexity of

searching over all possible sets Gд ⊆ [n] grows exponentially with

n, since there are overall 2n choices for Gд .

The following lemma shows that the optimal G∗
д contains the

workers having the largest pд,i among all the workers, which

largely reduce the time complexity of finding the optimal G∗
д ,

Lemma 4.5. Without loss of generality, we assume pд,1 ≥ pд,2 ≥

· · · ≥ pд,n . Considering all possible sets Gд with fixed cardinality
nд , the optimal G∗

д with cardinality nд that maximizes the success
probability is

G∗
д = {1, 2, . . . ,nд} (22)

which represents the set of nд workers having largest pд,i among all
the workers.

Proof. For a fixed integer nд , we suppose G1 is the optimal set

with cardinality nд where i < G1 and 1 ≤ i ≤ nд . Thus, there
exists a j ∈ G1 such that j > nд . Then, we construct a set G2 =

(G1\{j}) ∪ {i}. The success probability of using the load allocation

vector characterized by G1 can be written as

P(T (G1)(®µ) ≤ d) = P(Q(G1) ≥ a(G1)) (23)

=pд, jP(Q(G1\{j}) ≥ a(G1) − 1) + (1 − pд, j )P(Q(G1\{j}) ≥ a(G1))

where the first term is the success probability when worker j is in
the good state, and the second term is the success probability when

worker j is in bad state. Similarly, the success probability of using

the load allocation vector characterized by G2 can be written as

P(T (G2)(®µ) ≤ d) = P(Q(G2) ≥ a(G2)) (24)

=pд,iP(Q(G2\{i}) ≥ a(G2) − 1) + (1 − pд,i )P(Q(G2\{i}) ≥ a(G2)),

which can be further written as

pд,iP(Q(G1\{j}) ≥ a(G1) − 1) + (1 − pд,i )P(Q(G1\{j}) ≥ a(G1))

since G2 = (G1\{j}) ∪ {i} and a(G1) = a(G2). Because pд,i ≥ pд, j
and P(Q(G1\{j}) ≥ a(G1) − 1) ≥ P(Q(G1\{j}) ≥ a(G1)), we have

P(T (G2)(®µ) ≤ d) − P(T (G1)(®µ) ≤ d) (25)

=(pд,i − pд, j ){P(Q(G1\{j}) ≥ a(G1) − 1) − P(Q(G1\{j}) ≥ a(G1))}

≥0
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which is a contradiction. Thus, the optimal set Gд with fixed cardi-

nality nд must include i for all 1 ≤ i ≤ nд . □

By Lemma 4.5, for a fixed cardinality nд , the optimal G∗
д is the

collection of nд workers having largest pд,i among all the workers.

Therefore, to find the optimal load allocation vector, we can only

focus on finding the optimal n∗д . Since there are only n choices for

n∗д (i.e. 1, 2, . . . ,n), the complexity of searching the optimal n∗д is

linear in the number of workers n which is much smaller than 2
n
.

The following theorem shows that the computation strategy

composed of the Lagrange coding scheme and the load allocation

vector that is the solution of load allocation problem achieves the

optimal timely computation throughput when the Markov model

is known to the master.

Theorem 4.6. Assume the Markov model of the network is know
to the master. Let the computation strategy η∗ = ( ®д∗, { ®ℓ∗m }∞m=1) be
the computation strategy where ®д∗ is the Lagrange coding scheme
and { ®ℓ∗m }∞m=1 is given by solving load allocation problem. Then, η∗

achieves the optimal timely computation throughput.

Proof. We consider the computation of round m and denote

Nm (d) as the indicator represents whether the computation is fin-

ished in time d in roundm using an arbitrary computation strategy.

Clearly, Nm (d) is a Bernoulli random variable with parameter P(m)

which denotes the success probability using this computation strat-

egy in roundm. Thus, Nm (d) would contribute to the throughput

with probability P(m). Since η∗ maximizes P(m) for allm, this strat-

egy is optimal. □

Since the Markov model is unknown to the master in the original

problem, the timely computation throughput achieved by η∗ gives
us an upper bound. In the next section, we will show that this upper

bound can be matched by using LEA.

5 OPTIMALITY OF LEA
Now, we show the optimality of LEA by the following theorem.

Theorem 5.1. The proposed Lagrange Estimate-and-Allocate
(LEA) strategy is optimal, i.e.,

RLEA(d) = R∗(d) almost surely, (26)

where RLEA(d) denotes the timely computation throughput using the
LEA strategy.

Proof. In order to prove Theorem 5.1, we first state Lemma 5.2

whose proof is moved to Appendix C for the purpose of readibility.

Lemma 5.2. PLEA(m) converges to P∗(m) as m goes to infinity,
where P∗(m) denotes the optimal success probability in roundm and
PLEA(m) denotes the success probability in roundm using the LEA
strategy.

We denote N ∗
m (d) as the indicator representing whether the

computation is finished by time d in roundm using the optimal

computation strategy which maximizes the success probability in

roundm. Clearly, N ∗
m (d) is a Bernoulli random variable with param-

eter P∗(m). Also, we denoteNLEA,m (d) as the indicator representing
whether the computation is finished in timed in roundm using LEA.

Then, NLEA,m (d) is a Bernoulli random variable with parameter

PLEA(m).

Now, we model the state of the whole system which includes all

n workers as a Markov chain. Since each worker has 2 states (good

or bad), there are a total of 2
n
different states of the system.Without

loss of generality, we index the states of the system as {1, 2, . . . , 2n }.

Since the transition matrix of this Markov chain has all the entries

larger than 0, this Markov chain is irreducible. We denote s(m) as

the state of the system in roundm. Also,p∗s is denoted as the success
probability of state s using the optimal computation strategy, i.e.,

P∗(m) = p∗s if s(m) = s . By SLLN and the Ergodic theorem, the

optimal timely computation throughput R∗(d) can be written as

R∗(d) = lim

M→∞

∑M
m=1 N

∗
m (d)

M
(27)

= lim

M→∞

2
n∑

s=1

∑
m≥1:s(m)=s N

∗
m (d)

Vs (M)

Vs (M)

M
=

2
n∑

s=1
p∗s

1

Es [Ts ]
a.s .,

where the Ergodic theorem is formally stated as follows:

Theorem (Ergodic Theorem). If transition matrix P of a Markov
chain (Xm )m≥0 is irreducible, then we have

lim

m→∞

Vs (m)

m
=

1

Es [Ts ]
a.s . (28)

where Vs (m) is the number of visits to state s up to round m and
Es [Ts ] is the expected return time to state s .

By Lemma 5.2, for all ϵ > 0, there exitsm(ϵ) such that PLEA(m) >

P∗(m)−ϵ for allm > m(ϵ). Let Ñm (d) be the independent Bernoulli
process with parameter P∗(m)−ϵ . We couple NLEA,m (d) and Ñm (d)

as follows. If NLEA,m (d) = 0, then Ñm (d) = 0. If NLEA,m (d) = 1,

then Ñm (d) = 1 with probability
P∗(m)−ϵ
PLEA(m)

, and Ñm (d) = 0 with

probability 1 −
P∗(m)−ϵ
PLEA(m)

. Note that Ñm (d) is still marginally inde-

pendent Bernoulli process of parameter P∗(m) − ϵ . Then, we have

RLEA(d) = lim

M→∞

∑M
m=1 NLEA,m (d)

M
(29)

≥ lim

M→∞

∑M
m=m(ϵ )+1 NLEA,m (d)

M
(30)

≥ lim

M→∞

∑M
m=m(ϵ )+1 Ñm (d)

M
(31)

= lim

M→∞

1

M

2
n∑

s=1

∑
m≥m(ϵ )+1:s(m)=s

Ñm (d) (32)

= lim

M→∞

M −m(ϵ)

M

2
n∑

s=1

∑
m≥m(ϵ )+1:s(m)=s Ñm (d)

Vs (M) −Vs (m(ϵ))

Vs (M) −Vs (m(ϵ))

M −m(ϵ)

=

2
n∑

s=1
(p∗s − ϵ)

1

Es [Ts ]
=

2
n∑

s=1
p∗s

1

Es [Ts ]
−

2
n∑

s=1
ϵ

1

Es [Ts ]
(33)

= R∗(d) −
2
n∑

s=1
ϵ

1

Es [Ts ]
a.s . (34)

using SLLN and the Ergodic theorem. By the fact that RLEA(d) ≤
R∗(d) and Letting ϵ → 0, we have REA(d) = R∗(d) which completes

the proof. □
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6 EXPERIMENTS
In this section, we demonstrate the impact of LEA by simulation

studies as well as experiments over Amazon EC2 cluster.

6.1 Numerical Analysis
We now present numerical results evaluating the performance of

the LEA strategy. First, we call a computation strategy static if

this computation strategy assigns the loads to workers without

considering their states in previous rounds. For comparison with

LEA, we consider the following static computation strategy:

Static Computation Strategy: Prior to computation, Lagrange

coding scheme is used for data encoding. In each roundm, each

worker i is assigned to ℓд or ℓb number of evaluations based on the

stationary distributions of the underlying Markov model, in which

we denote (πд,i ,πb,i ) as stationary distribution of worker i . More

specifically, for each worker i in each roundm, this strategy does

assignment as follows:

ℓm,i =

{
ℓд with probability πд,i

ℓb with probability πb,i .
(35)

Note that whenever the total loads of the generated
®ℓm is smaller

than the optimal recovery threshold, then the strategy would do

assignments again until the total loads of the generated
®ℓm is greater

than the optimal recovery threshold.

Since static computation strategies don’t learn the dynamics of

network, they can only do load assignments in a deterministic man-

ner or randomly without using any history. Thus, the chosen static

computation strategy which utilizes the stationary distributions of

underlying Markov model is better than other static computation

strategies in general.

Given deadlined = 1 second in each roundm, we consider a prob-

lem of evaluating a quadratic function fm (X j )= X⊤
j (X j ®wm−®y) over

n = 15 workers, where the dataset X1,X2, . . . ,X50 ∈ R1000×1000,
®y ∈ R1000×1 and ®wm ∈ R1000×1 which is the input vector in roundm.

Each worker stores r = 10 encoded data chunks using Lagrange cod-

ing scheme. In such setting, we have the optimal recovery threshold

K∗ = 99 for both LEA and the static computation strategy.

For simulations, we let pд→д,i = pд→д ,pb→b,i = pb→b for all i ,
and consider the following four scenarios:

Scenario 1: (µд , µb ) = (10, 3), (pд→д ,pb→b ) = (0.8, 0.8) and the

corresponding stationary probabilities (pд ,pb ) = (0.5, 0.5).

Scenario 2: (µд , µb ) = (10, 3), (pд→д ,pb→b ) = (0.8, 0.7) and the

corresponding stationary probabilities (pд ,pb ) = (0.6, 0.4).

Scenario 3: (µд , µb ) = (10, 3), (pд→д ,pb→b ) = (0.8, 0.533) and the

corresponding stationary probabilities (pд ,pb ) = (0.7, 0.3).

Scenario 4: (µд , µb ) = (10, 3), (pд→д ,pb→b ) = (0.9, 0.6) and the

corresponding stationary probabilities (pд ,pb ) = (0.8, 0.2).

Fig. 3 illustrates the performance comparison for LEA and the

static computation strategy. We make the following conclusions

from the results:

• LEA increases substantial improvement in terms of the timely

computation throughput. Over the four scenarios, LEA improves

the static computation strategy by 1.38× ∼ 17.5×.

• The timely computation throughput improvements over the static

computation strategy become more significant as the stationary
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Figure 3: Numerical Evaluations. Compared with the static
load allocation strategy, LEA improves the timely computa-
tion throughput by 1.38× ∼ 17.5×.

probability pд decreases. When pд is small, the workers would

be in the bad state more probably in the long run. In this sense,

the static computation strategy assigns loads to the workers in a

more pessimistic way. However, there is temporal correlation of

computation speeds which the static computation strategy doesn’t

take into account. Thus, although pд is small, LEA can achieve

much higher timely computation throughput which demonstrates

that LEA can adapt to the dynamics of network well.

6.2 Experiments using Amazon EC2 machines
Before showing the experimental results, we first introduce CPU

credits [23] which can boost T2 and T3 instances above baseline

performance. For a t2.micro instance, as shown in Fig. 1, there is

a 10 times difference between baseline performance and burstable

performance, i.e., a burst t2.micro instance has computing speed

10 times faster. The baseline performance and ability to burst are

governed by CPU credits [23].

We ran the master node over m4.xlarge instance and all work-

ers over t2.micro instances. We implemented two computation

strategies in python, and used MPI4py [7] for message passing be-

tween instances. Before starting computations, each worker stores

encoded data in its local memory. In each round, having received a

function fm from the master, each worker computes the assigned

computation using the stored data, and sends it back to the mas-

ter asynchronously using Isend(). As soon as the master gathers

enough results from the workers, it recovers the evaluations for

the request function.

Given deadline d seconds in each roundm, we consider a prob-

lem of evaluating a linear function fm (X j ) = X⊤
j Bm over n = 15

workers, where the datasets {X j }
k
j=1’s are real matrices with cer-

tain dimensions, and Bm ∈ R3000×3000 is the input matrix. Each

worker stores r = 10 encoded data chunks using Lagrange coding

scheme. In particular, in each round, the computation request’s

arrival time is shift-exponential random variable which is the sum

of a constant Tc = 30 and an exponential random variable with

mean λ. In this setting, we have the optimal recovery threshold

K∗ = 50 for both LEA and the static computation strategy. Since

the Markov model is unknown (and indeed even the type of the

underlying stochastic process determining the states of the workers
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Figure 4: Experimental evaluations over 15 t2.micro in-
stances in Amazon EC2. Compared with the static load al-
location strategy, LEA improves the timely computation
throughput by 1.27× ∼ 6.5×.

in the cloud is not known), to compare with the LEA strategy, we

consider a static computation strategy that each worker is assigned

to ℓд or ℓb number of evaluations with equal probability in each

round. For experiments, we consider the following six scenarios:

Scenario 1: Size of X j = 25 × 3000, k = 120, λ = 10 and d = 2.5.

Scenario 2: Size of X j = 25 × 3000, k = 120, λ = 30 and d = 2.5.

Scenario 3: Size of X j = 30 × 3000, k = 100, λ = 10 and d = 3.

Scenario 4: Size of X j = 30 × 3000, k = 100, λ = 30 and d = 3.

Scenario 5: Size of X j = 60 × 3000, k = 50, λ = 10 and d = 6.

Scenario 6: Size of X j = 60 × 3000, k = 50, λ = 30 and d = 6.

Fig. 4 provides a performance comparison of LEA with the static

load allocation strategy for the six scenarios. From the results,

we found that LEA provides substantial improvement in terms of

the timely computation throughput. Over the six scenarios, LEA

increases the static computation strategy by 1.27× ∼ 6.5×.

7 CONCLUSION
Motivated by high variability of computing resources in modern

distributed computing systems and increasing demand for timely

event-driven services with deadline constraints, we consider the

problem of dynamic computation load allocation over a coded com-

puting framework. We propose an optimal dynamic computation

strategy Lagrange Estimate and Allocate, LEA, which is composed

of utilizing the Lagrange coding scheme for data encoding and

assigning computation loads based on the estimated state of the

network, which is done by estimating the transition probabilities of

an underlying Markov model for the system’s state from observing

the past events at each time step. In the end, we show that com-

pared to the static computation strategy, LEA increases the timely

computation throughput by 1.38× ∼ 17.5× in simulations and by

1.27× ∼ 6.5× in Amazon EC2 clusters.

At a conceptual level, this paper has some interesting compar-

isons/connections with [15]. Under wireless networks, [15] investi-

gates how to turn base stations on or off, in order to adapt to the

unknown load arrival and channel statistics. Under cloud comput-

ing networks, our paper focuses on how to do the computation load

assignment in order to adapt to unknown computing networks. So,

at a high-level, the corresponding scheduling problems can be seen

as dual of each other: [15] assigns base stations to good (on) or bad

(off) states in order to meet the demands, while our goal is to assign

the computation loads in order to optimally exploit the (unknown)

state of the workers. However, we also point out that the setting

and objective of the two papers are quite different. We consider

cloud computing platforms and focus on the timely computation

throughput, which is very different from [15]. Another difference

is in the proof techniques to show the optimality of the proposed

algorithms. The Lyapunov arguments for the adaptive scheme used

in [15] is quite different from our approach.
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A PROOF OF LEMMA 4.3
Given an outcome of ®µ, we denote Y (d, ®µ, ®ℓ) as the total number

of evaluations sent back to the master in time d using the load

allocation vector
®ℓ. We define two events A ≜ {®µ : Y (d, ®µ, ®ℓ) ≥

K( ®д1)} and B ≜ {®µ : Y (d, ®µ, ®ℓ) ≥ K( ®д2)}. It is clear that we have

P(T ( ®ℓ, ®д1) ≤ d) = P(A) and P(T ( ®ℓ, ®д2) ≤ d) = P(B). Considering an

arbitrary outcome of ®µ with the fact K( ®д1) ≤ K( ®д2), we have that if

Y (d, ®µ, ®ℓ) ≥ K( ®д2) then Y (d, ®µ, ®ℓ) ≥ K( ®д1). It implies B ⊆ A which

concludes P(A) ≥ P(B), i.e., P(T ( ®ℓ, ®д1)(®µ) ≤ d) ≥ P(T ( ®ℓ, ®д2)(®µ) ≤ d).

B PROOF OF LEMMA 4.4
Given a load allocation vector

®ℓ, we can construct
®ℓ
′
by assigning

ℓ
′

i = ℓb if 0 ≤ ℓi ≤ ℓb , and ℓ
′

i = ℓд otherwise.

Given an outcome of ®µ, we denote Y (d, ®µ, ®ℓ) as total number of

results sent back to the master in time d using the load allocation

vector
®ℓ. We define two events A ≜ {®µ : Y (d, ®µ, ®ℓ) ≥ K∗} and

B ≜ {®µ : Y (d, ®µ, ®ℓ
′
) ≥ K∗}. It is clear that we have P(T ( ®ℓ, ®д∗)(®µ) ≤

d) = P(A), and P(T ( ®ℓ
′
, ®д∗)(®µ) ≤ d) = P(B). Considering an arbitrary

outcome of ®µ, we have the following facts: (1) If 0 ≤ ℓi ≤ ℓb , then

we have

ℓ
′

i
µi ≤ d . (2) If ℓb < ℓi ≤ ℓд , we have either

ℓi
µд ,

ℓ
′

i
µд ≤ d or

ℓi
µb
,
ℓ
′

i
µb
> d . (3) ℓ

′

i ≥ ℓi for all i . By the facts above, if Y (d, ®µ, ®ℓ) ≥

K∗
, then Y (d, ®µ, ®ℓ

′
) ≥ K∗

which implies A ⊆ B. Thus, we have

P(T ( ®ℓ
′
, ®д∗)(®µ) ≤ d) ≥ P(T ( ®ℓ, ®д∗)(®µ) ≤ d) which completes the proof.

C PROOF OF LEMMA 5.2
In roundm, we have the optimal success probability:

P∗(m) =

|G∗
д (m) |∑

l=a(G∗
д (m))

∑
G:G⊆G∗

д (m), |G |=l

∏
i ∈G

pд,i (m)
∏

i ∈G∗
д (m)\G

pb,i (m)

where G∗
д (m) characterizes the optimal load allocation vector in

roundm. Let’s recall that we have i∗m to determine load allocation

vector in roundm using LEA, i.e., ℓm,i = ℓд if 1 ≤ i ≤ i∗m , ℓm,i = ℓb
otherwise. It is clear that this allocation vector is characterized

by a set
ˆG(m) = [i∗m ]. Also, we have w(i∗m ) = a( ˆG(m)) where

w(ĩ) ≜ ⌈
K ∗−(n−ĩ)ℓb

ℓд
⌉. Thus, PLEA(m) can be written as follows:

PLEA(m) =

i∗m∑
l=w (i∗m )

∑
G:G⊆[i∗m ], |G |=l

∏
i ∈G

pд,i (m)
∏

i ∈[ĩ]\G

pb,i (m)

=

| ˆGд (m) |∑
l=a( ˆGд (m))

∑
G:G⊆ ˆGд (m), |G |=l

∏
i ∈G

pд,i (m)
∏

i ∈ ˆGд (m)\G

pb,i (m)

Note that the allocation vector characterized by
ˆGд(m) maximizes

the estimated success probability defined in (7) and (8) which is the

estimated success probability based on p̂д,i (m) and p̂b,i (m).

By SLLN, we have that p̂д,i (m) converges to pд,i (m) and p̂b,i (m)

converges to pb,i (m) almost surely, as m goes to infinity. For all

ϵ > 0, there exists m(ϵ) such that |pд,i (m) − p̂д,i (m)| < ϵ and

|pb,i (m) − p̂b,i (m)| < ϵ for allm > m(ϵ). Since ˆGд(m) maximizes

the estimated success probability based on p̂д,i (m) and p̂b,i (m), for

allm > m(ϵ), we have

P∗(m)

≤

|G∗
д (m) |∑

l=a( |G∗
д (m) |)

∑
G:G⊆G∗

д (m), |G |=l

∏
i ∈G

(p̂д,i (m) + ϵ)
∏

i ∈G∗
д (m)\G

(p̂b,i (m) + ϵ)

=

|G∗
д (m) |∑

l=a( |G∗
д (m) |)

∑
G:G⊆G∗

д (m), |G |=l

∏
i ∈G

p̂д,i (m)
∏

i ∈G∗
д (m)\G

p̂b,i (m) + f (ϵ)

≤

| ˆGд (m) |∑
l=a( | ˆGд (m) |)

∑
G:G⊆ ˆGд (m), |G |=l

∏
i ∈G

p̂д,i (m)
∏

i ∈ ˆGд (m)\G

p̂b,i (m) + f (ϵ)

≤

| ˆGд (m) |∑
l=a( | ˆGд (m) |)

∑
G:G⊆ ˆGд (m), |G |=l

∏
i ∈G

(pд,i (m) + ϵ)
∏

i ∈ ˆGд (m)\G

(pb,i (m) + ϵ)

+ f (ϵ) = PLEA(m) + д(ϵ) + f (ϵ).

Note that h(ϵ) ≜ д(ϵ) + f (ϵ) is a polynomial function of ϵ and

h(0) = 0, which implies h(ϵ) → 0 as ϵ → 0. Moreover, it is clear

that PLEA(m) ≤ P∗(m) since P∗(m) is optimal. Therefore, we can

conclude that for all ϵ1 > 0, there existsm(ϵ1) such that |PLEA(m)−

P∗(m)| < ϵ1 for allm > m(ϵ1) which completes the proof.
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