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Abstract—When it comes to distribution system state estima-
tion (DSSE), limited network observability is a major concern,
due to limited sensor deployment at practical power distribution
systems. To address this issue, this paper proposes a novel DSSE
approach, based on sparse recovery for distribution networks
with low-observability, where the measurements come from only
a handful of distribution-level phasor measurement units. Here,
the DSSE problem is formulated over differential synchrophasors,
and in form of a least absolute shrinkage and selection operator
(Lasso), which is solved using the alternating direction method
of multipliers (ADMM). Importantly, our solution method is
dynamic, because it uses the state estimation results from the
previous time slots in order to update the weights in the instances
of the Lasso problem so as to enhance the DSSE performance.

Keywords—Distribution system state estimation, low-
observability, sparse recovery, differential synchrophasors.

I. INTRODUCTION

A. The Issue

Traditionally, measurements in distribution networks are un-
synchronized, have relatively low reporting rates, and are often
limited to SCADA and smart meters. Recently, distribution-
level phasor measurement units, a.k.a. micro-PMUs, have been
deployed in some utility feeders. Micro-PMUs provide precise
and time-synchronized phasor measurements for nodal voltage
and branch current at high reporting rates, such as once every
8 milliseconds [1]. However, due to the cost and labor, only a
small number of micro-PMUs are installed in each feeder in
practice. Such few number of installations has some real-world
applications, such as asset monitoring [2], phase identification
[3], and fault detection [4]; also see [5] for a related survey.

Distribution system state estimation (DSSE) is a critical task
to monitor power distribution systems. However, obtaining full
observability through micro-PMU measurements is a major
practical obstacle. Thus, a method is needed in practice to run
the DSSE under low-observability conditions, i.e. only from a
limited number of micro-PMU measurement points.

B. Intuitions Based on Sparsity

The proposed DSSE approach in this paper is based on
two intuitions. First, by examining a typical micro-PMU data
stream, one can see that micro-PMU measurements are often
in quasi-steady-state conditions. That is, the changes in the
loads and other operating conditions in distribution circuits
are not frequent, when compared to the high reading rate of
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Fig. 1. An example to illustrate approximate sparsity: (a) An instance of the
IEEE 33-bus test system with changes in load at buses 13 and 21; (b) The
changes in line currents, i.e., ∆I; (c) The changes in bus voltages, i.e., ∆V .

micro-PMUs. Therefore, there is often useful information to
carry forward from one instance of micro-PMU measurements
to the next. Hence, we should focus on estimating differential
synchrophasors, c.f. [4]. That is, we should define the state
variables in the DSSE problem to be the changes in voltage
phasors, denoted by ∆V , instead of voltage phasor itself.

The second intuition is that, the DSSE problem that is
defined based on ∆V , can be seen as a sparse recovery
problem in signal processing, c.f. [6]. This is particularly the
case if the unknowns in the DSSE problem are defined as
not only the changes in nodal voltages but also the changes
in branch currents. This is because a typical change in a
distribution circuit, such as a switching event, results in
considerable changes only in a few states of the system.

An example is shown in Fig. 1, where the change in the
states of the distribution system are due to major changes in the
loads at bus 13 and 21, as marked on Fig. 1(a). The changes in
branch current phasors, denoted by ∆I , are considerable only
for those line segments which connect these load buses to the
substation; and negligible elsewhere, see Fig. 1(b). As for the
changes in voltage phasors, the changes are remarkable only



2

for a subset of buses, in particular at those closer to the buses
with load change. Also, the changes are more significant for
the real parts rather than the imaginary parts, see Fig. 1(c). We
can see that if we approximate the smaller state values that
reside within the zero approximation region, i.e. the yellow
ribbon in the figures, many of the entries in the overall vector
of system states will be zero, making it a sparse vector.

C. Summary of Contributions

The main contributions in this paper are as follows:
1) Developing a new formulation for the DSSE problem in

low-observable distribution networks, per the intuitions that
we listed in Section I.B, such that we can treat the under-
determined DSSE problem as a sparse recovery problem.

2) Developing a dynamic reweighting algorithm to solve the
formulated DSSE problem. It comprises a basic alternating
direction method of multipliers (ADMM), plus a mechanism
to update the coefficients in the objective function based on
the state estimation solutions in the previous time slots.

3) Conducting numerical case studies and comparing the
performance of the proposed method with that of a con-
ventional weighted least square (WLS) method aided by
pseudo-measurements. We also conduct sensitivity analysis to
investigate the impact of choosing the design parameters.

II. RELATED WORK

A common approach to address low-observability condi-
tions is to use pseudo-measurements, such as historical data
from smart meters, in order to turn the under-determined
system of equations in the DSSE problem into an over-
determined type. However, for any DSSE method that uses
pseudo-measurements, the accuracy of the DSSE solution
directly depends on the accuracy and the overall data quality
of the pseudo-measurements that are being used. For instance,
in [7], the deviations in load profiles are used as pseudo-
measurements for the purpose of solving the DSSE problem. A
key issue is to construct more realistic load profiles to improve
the accuracy of the corresponding DSSE solution.

Recently, machine learning is also used to resolve the
observability issue in DSSE problems. The data-driven tech-
niques in this context are again mostly utilized to generate high
fidelity pseudo-measurement. For example, in [8], a Bayesian
state estimator is developed via deep learning, wherein the sys-
tem states and measurements are modeled as random variables
with joint probability distributions. However, the challenge
remains in practice on how to obtain the unknown joint
probability distribution among the random variables through a
learning mechanism, based on limited measurements.

Compressed sensing and sparse signal recovery has also
recently attracted some attention to deal with low-observability
in DSSE, such as in [9]. However there is a fundamental
difference between this paper and the work in [9], and that
is the fact that here we define the DSSE problem based on
differential synchrophasors, as we pointed out earlier. This
results in immediately branching away from [9] in our problem
formulation, and subsequently our proposed solution methods.
This is an important distinction, because one can make a

stronger and more practical case for sparsity in the DSSE
problem when the states of the system are defined based on
the differential current and voltage synchrophasaors. Another
drastic difference with [9] is that our proposed method is in
a dynamic approach, where it uses the state estimation results
from the previous time slots so as to update the weights of
objective function of the state estimation problem to improve
its performance, while approach in [9] is static.

III. SPARSE DSSE METHOD

A. Standard DSSE Problem
Consider a typical linear DSSE problem [10]:

z = Hx+ e. (1)

As in [10], we assume that the measurements come from
micro-PMUs. However, given the scope of this paper, suppose
the number of micro-PMUs is very limited, which results in a
low-observability condition. Accordingly, we define z ∈ Rm
as the vector of micro-PMU measurements that includes m
distinct nodal voltage and branch current phasors at all micro-
PMU locations, x ∈ Rn is the vector of state variables and H
is the measurement function matrix of size m× n.

If Problem (1) is an under-determined system of equations,
then the DSSE problem has low-observability, and it has
infinite number of solutions. Thus, in order to find the unique
solution of the system states, Problem (1) should be modified.

B. Reformulated DSSE Problem
To deal with the low-observability conditions, we select the

system state variables as the changes in the voltage phasors
of all buses at time slot t in comparison with time slot t− 1
and denote the resulting vector by

xt =
[

∆V tj,r ∆V tj,i
]T
, (2)

where{
∆V tj,r = V tj,r − V

t−1
j,r

∆V tj,i = V tj,i − V
t−1
j,i

∀j ∈ Nnodes, ∀t ∈ T . (3)

Here, ∆V tj,r and ∆V tj,i denote the real part and imaginary
part of the voltage phasor difference at node j, respectively,
and Nnodes denotes for the set of all buses on the network.

Similarly, at each time slot t, we define the changes in the
current phasor on the line between bus k and bus l as:

∆Itkl,r = Gkl(∆V
t
k,r −∆V tl,r)−Bkl(∆V tk,i −∆V tl,i)

∆Itkl,i = Bkl(∆V
t
k,r −∆V tl,r) +Gkl(∆V

t
k,i −∆V tl,i)

(4)

where Gkl and Bkl denote the conductance and the suscep-
tance of line kl, respectively. The equations of the form in (4)
can be defined for ∀kl ∈ Nbranch, where Nbranch denotes the
set of all line segments in the network.

Next, we define the vector of the measurements as follows:

zt =
[

∆V tj,r ∆V tj,i ∆Itkl,r ∆Itkl,i
]T

∀j ∈Mnode, ∀kl ∈Mbranch,
(5)

where Mnode and Mbranch denote the set of nodes and lines
whose voltage and currents are measured by micro-PMUs. By
replacing xt from (2) and zt from (5) in (1) we can obtain a
reformulated version of the standard DSSE problem.
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C. DSSE as a Sparse Recovery Problem

From Section I.B, we know that the vector of changes
in voltage phasors is a somewhat sparse vector. If we now
incorporate the changes in current phasors as auxiliary vari-
ables, within the state variables, then the resulting vector of
unknowns xt becomes even more sparse. In this regard, we
can further adjust the system states as follows:

xt =
[

∆V tj,r ∆V tj,i ∆Itkl,r ∆Itkl,i
]T

∀j ∈ Nnode, ∀kl 6∈ Mbranch.
(6)

The reformulated DSSE problem in Section III.B can now
be seen as a sparse recovery problem, which is formulated as
a least absolute shrinkage and selection operator (Lasso) [6]:

min
xt

1

2

∥∥zt −Hxt∥∥2
2

+ λ
∥∥xt∥∥

1
. (7)

where the first term is the estimation error and the second
term with `1-norm is the sparsity regularizer, which limits the
number of non-zero entries of xt through the penalty factor λ.
Importantly, we can determine the zero-approximation region
in Fig. 1 by adjusting the value of λ. It should also be noted
that corresponding values in zt to newly added unknowns of
xt (i.e. changes in current phasor for segments without micro-
PMU measurement) are zero. In fact, we move ∆Itkl in (4) to
the right side of equation and incorporate the constraints in
(4) in the formulation in (7) as part of matrix H . Therefore,
we do not need to include them as separate constraints.

IV. DYNAMIC SOLUTION APPROACH

A. Basic Iterations

The optimization (7) is convex but non-smooth, c.f. [11]. A
computationally convenient way to solve (7) is to use ADMM
[11]. In this regard, we first rewrite problem (7) as:

min
xt,y

1

2

∥∥zt −Hxt∥∥2
2

+ λ‖y‖1

s.t. xt = y.

(8)

The augmented Lagrangian of (8) with penalty factor ρ > 0
has got the form of:

Lρ(xt, y, u) =
1

2

∥∥zt −Hxt∥∥2
2

+ λ‖y‖1 + ρ〈u, xt − y〉

+
ρ

2

∥∥xt − y∥∥2
2

(9)

Next, we can derive the following system of iterative
equations by minimizing Lρ(xt, yk−1, uk−1) over xt and
Lρ(xtk, y, uk−1) over y to solve the above reformulated op-
timization problem [11]:

xtk+1 := (H>H + ρI)−1(H>zt + ρ(yk − uk))

yk+1 := Sλ/ρ(x
t
k+1 + uk)

uk+1 := uk + xtk+1 − yk+1

(10)

where subscript k denotes for the k-th iteration, u is the dual
variable corresponding to the constraint in (8), and operator
Sλ/ρ is the proximal operator [11].

The ADMM iterations in (10) determine the values of the
very small entries, i.e. those that can be approximated by zero

in the sparse recovery process, based on the values of λ and ρ,
and the pre-determined maximum number of iterations. This
provides an advantage in implementing the DSSE algorithm
because it provides a knob to control the extent of the zero-
approximation for the states that seem small.

B. Dynamic Enhancement
Given the differential nature of the state variables in this

study, the proposed DSSE problem is inherently a dynamic
framework and its performance can be further enhanced
through learning its sparse characteristics, i.e., learning which
unknowns can be zero-approximated. This can be done at each
time slot by using a dynamic reweighting based on the largest
obtained values from the previous time slot. The changes in the
system states are due to changes in loads or grid components.
The buses that experience the largest changes in their voltage
are often those that are close to such loads or grid components.
In this regard, we propose to rewrite (8) as:

min
xt,y

1

2

∥∥zt −Hxt∥∥2
2

+ λ‖y‖1

s.t. F txt = y

(11)

where F is a diagonal n×n reweighting matrix. Suppose we
are at time slot t. Let Γt−1 denote the set of the half largest
differential states that were non-zero at time slot t − 1, i.e.,
during the previous time slot. We update the entries of F t as:

F tii =

{
1 ; if i ∈ Γt−1

1/|xt−1i + ε| ; otherwise
(12)

where ε is a small positive value. From (12), if the pre-
vious differential state was among the half of largest non-
zero differential states, i.e., the voltage or current phasor
corresponding to that state variable had a considerable change,
then the weight corresponding to that differential state remains
1, which is the default value as in (8). However, if the previous
differential state was zero, then the weight is set in an inverse
proportional relationship with its value during the previous
time slot. This will relax the constraint of sparsity on these
entries. Note that, inverse proportional relationship assigns
large penalty coefficients to the approximately zero elements;
this helps the algorithm to improve its accuracy in the next
time slots by ignoring the corresponding state variables.

Given F t, the iterative solutions in (10) are updated as:

xtk+1 := (H>H + ρ(F t)>F t)−1(H>zt + ρF t(yk − uk))

yk+1 := Sλ/ρ(F
txtk+1 + uk)

uk+1 := uk + F txtk+1 − yk+1.
(13)

C. Recoverability Analysis
Consider the problem formulation in (7). Based on the

vector of unknowns defined in (6), we can rewrite H as:

H =
[
W −I

]
, (14)

where W is the sub-matrix corresponding to changes in voltage
and I is the identity sub-matrix corresponding to changes in
current. We can write the vector of measurements as:

zt =
[
W −I

] [
∆V tj ∆Itkl

]T
= W∆V t −∆It

∀j ∈ Nnode, ∀kl 6∈ Mbranch.
(15)
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Fig. 2. Distribution of MAPE for: (a) sparse DSSE without reweight; (b) sparse DSSE with reweight; (c) WLS DSSE aided by pseudo-measurements.

From the illustrative example in Fig. 1 in Section I, we know
that vector ∆It is more sparse than vector ∆V t. Therefore,
we can treat ∆It as outliers in W∆V t, which resembles the
problem of `1 decoding [12]. If W is over-determined and has
full rank, then under certain conditions, we can guarantee the
recovery of ∆V t by minimizing |zt−W∆V t|1 as long as the
outliers ∆It are sufficiently sparse. In this regard, whether and
to what extent we can guarantee the true recoverability of state
variables depends on the number and location of micro-PMUs,
which affect matrix W . For the example in our base case stud-
ies, W has about 50 useful singular vectors in a 74-dimensional
space, which implies that we can resolve approximately 12
arbitrary outliers (equivalent to 12 differences in current of
branches without micro-PMU measurement) in the best case
and none of them in the worst case. These bounds rely on
sufficient conditions for recoverability; empirical performance
can be better. As we will see in the numerical case studies in
the next section, the proposed DSSE method is very successful
in accurately estimating the states of the system.

V. NUMERICAL CASE STUDIES

The performance of the proposed sparse DSSE is evaluated
on IEEE 33-bus distribution test system. 2,000 Monte Carlo
scenarios are constructed via MATPOWER toolbox in MAT-
LAB R2017b. Each scenario includes 100 time slots which
simulates transition of a scenario from initial state towards the
final state. In the base cases, it is considered that the net load
might change for a limited number of buses (up to three buses)
toward different values, from 50% decrease to 50% increase
across two successive micro-PMU reporting intervals.

In base case study, four micro-PMUs are placed on nodes 8,
20, 24, and 28. All 200,000 data samples are solved through
proposed sparse DSSE without and with the weight update to
investigate the effect of dynamic reweighting on the method.
Also, to show the efficiency of proposed method in comparison
with other existing DSSE which deal with low-observability,
all data samples are run into a conventional WLS which uses
the initial values of smart meters as pseudo-measurements
over the whole time intervals. We have considered the mean
absolute percentage error as defined in (16) to evaluate the
performance of proposed method, since method assessment
based on mean absolute error might be misleading due to
relatively small values of voltage difference:

eMAPE =
1

n

n∑
i=1

|x̂i − xi|
|xmaxi |

× 100 (16)

where |xmaxi | is the largest voltage difference in each scenario.
Distribution of MAPE for each of three DSSE methods is

shown in Fig. 2, which illustrates that proposed method has
got a better performance over the conventional WLS aided by
pseudo-measurements. The average and standard deviation of
MAPE over all data samples is outlined in Tables I, which
demonstrates that sparse DSSE with weight update has got
the lowest average and standard deviation error.

TABLE I
STATISTICAL CHARACHTERISTIC OF PROPOSED METHODS VS.

CONVENTIONAL WLS AIDED BY PSEUDO-MEASUREMENTS FOR MAPE

Method Average MAPE STD of MAPE Max. MAPE
Sparse DSSE

without reweight 13.91% 5.75 48.21%

Sparse DSSE with
with reweight 6.83% 3.23 30.75%

Conventional WLS
aided by pseudo-

measurements
25.33% 12.96 79.96%

To get a better insight on how inaccurate might be the
performance of proposed method, distribution of worst case
of estimation error (i.e. maximum absolute percentage voltage
estimation error) over all scenarios is plotted in Fig. 3. Based
on Fig. 3, the average absolute percentage error for worst case
of scenarios is about 35%, which means that for a typical sce-
nario the highest error of estimation for the voltage difference
is 35% in average for a network with low-observability.

To better investigate the performance of proposed method, a
sensitivity analysis is performed, wherein mean absolute per-
centage value of estimation error with respect to node number
is investigated for three distinct micro-PMU installations (Fig.
4). In the base case (case1), wherein only four micro-PMUs are
installed, the lower error along each of four laterals of 33-bus
test feeder, belongs to the nodes that are equipped with micro-
PMUs. As we get closer to the dead-ends, the estimation error
is being increased. To investigate the effect of adding micro-
PMUs at the end of laterals, a new micro-PMU is installed at
node 18 (case 2) and 33 (case 3), respectively in two separate
case studies. Regarding Fig.4, adding a single micro-PMU in
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Fig. 3. Distribution of the worst case in estimation error over all scenarios.
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Fig. 4. Mean absolute percentage value of estimation error at each bus.

the dead-end nodes, causes a remarkable improvement in the
accuracy of proposed sparse DSSE for estimation of voltage
of nodes which are along the lateral of node equipped with
new sensor, even though full-observability condition is not still
obtained. But, it does not affect the performance of estimation
for nodes which are not along that particular lateral which
mainly originates from the radiality of distribution grids.

To investigate the effect of load change on the performance
of proposed sparse DSSE, mean absolute error with respect to
load change is shown in Fig. 5. In this sensitivity analysis, only
scenarios wherein a single event happens are investigated. As
magnitude of load change is increased, it causes the estimation
error to incline. It should be noted that, the symmetrical shape
of Fig. 5 is due to the low penetration of distributed energy
resources in the test cases, which causes the system to make
up for the difference of current only from the substation node.
So, based on the linear equations in (4), load reduction or
increment in a same amount will have the same error.

VI. CONCLUSIONS

A novel DSSE approach is proposed for low-observability
conditions based on two key concepts: defining the state vari-
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ables based on differential synchrophasors; and formulating
and solving the resulting DSSE problem as a sparse signal
recovery problem. Furthermore, a dynamic framework is pro-
posed wherein the space DSSE approach uses the results from
the previous time slots to update the sparsity weights in the
objective function; to enhance the performance. Several case
studies are examined and sensitivity analysis are performed
which demonstrate the effectiveness of proposed method.
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