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Energy management schemes in distribution networks

The rise of smart metering technologies, flexible loads and
distributed generation resources (e.g., solar) has opened new doors
to improve efficiency and reliability at the distribution level

Design control and market operation algorithms to coordinate smart
loads and distribution generation
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Higher efficiency comes at the risk of higher vulnaribility

Heavy digitalization and connectivity through smart metering, IoT
devices, smart appliances and communication networks significantly
increases the attack surface of the grid at the distribution level

Main reserach question
Given these new vulnaribitilies, how can we
design secure demand response architectures?

Let us first do a high-level review of demand response architectures



Higher efficiency comes at the risk of higher vulnaribility

Heavy digitalization and connectivity through smart metering, IoT
devices, smart appliances and communication networks significantly
increases the attack surface of the grid at the distribution level

Main reserach question
Given these new vulnaribitilies, how can we
design secure demand response architectures?

Let us first do a high-level review of demand response architectures



Higher efficiency comes at the risk of higher vulnaribility

Heavy digitalization and connectivity through smart metering, IoT
devices, smart appliances and communication networks significantly
increases the attack surface of the grid at the distribution level

Main reserach question
Given these new vulnaribitilies, how can we
design secure demand response architectures?

Let us first do a high-level review of demand response architectures



Architecture #1: Centralized real-time pricing algorithms

At the beginning of each day, aggregator posts hourly varying prices
Essentially an open loop strategy.

Price design based on learned price response from past interactions



Architecture #2: Distributed coordination algorithms

Decentralized solutions allow users to coordinate to maximize welfare
Aggregator acts as fusion center for decentralized algorithms

Based on Lagrangian dual decomposition alg → Pull demand and push
updated electricity price (dual iterates) until convergence



Architecture #3: Decentralized coordinated algorithms

No fusion center, only communication with neighbors.

Uses consensus protocols to estimate optimal market clearning prices
based on local computation and collaborative message passing



Let us focus on our progress in the centralized scheme first

Suprisingly, this is not as well-studied as decentralized and distributed schemes
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Architecture #1: Real-time pricing algorithms

Main Question
How to learn the price response of a population of customers to minimize
running costs of an aggregator without endangering the distribution grid?

Challenges:
1 Stochastic and unknown nature of customer behavior
2 Variable daily aggregator cost due to changing conditions
3 Small size of the observation



Problem setup

Every day t, aggregator posts price pt ∈ P → observes `?(pt)

Daily context dt drawn iid from a finite set D

Aggregator’s goal?

min
pt

T∑
t=1

g(`?(pt),dt)

s.t. grid safety constraints

How do we model the load response to prices `?(pt)?

`?(pt) =
Q∑

i=1
ai(θ,pt)`?

i (pt)

So based on the physical characteristics of the problem,
we have reduced the challenge to not knowing the parameter θ
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Background: multi-armed bandits

We adopt a multi-armed bandit based solution for this problem

The name: imagine a gambler at a row of slot machines who has to
decide which machines to play if he has N coins.

Stochastic payoffs with different expected value θi for slot machine i

Goal: Maximize payoff over the N limited plays → The strategy
should not be focused solely on finding the highest paying machine

Exploration-Exploitation tradeoff

Two well-known heuristics with performance guarantees: UCB and
Thompson Sampling (confidence region vs. probability distribution)
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Real-time pricing based on multi-armed bandits

Aggregator’s problem

min
pt

E

[ T∑
t=1

g(`?(pt) + noise,dt)
]

s.t. grid safety constraints

where

`?(pt) =
Q∑

i=1
ai(θ,pt)`?

i (pt)

We have considered both Thompson Sampling and UCB based solutions
and we are making progress on providing performance guarantees (regret)

A. Moradipari, C. Silva, and M. Alizadeh, “Learning to Dynamically Price
Electricity Demand Based on Multi-Armed Bandits”

(Thompson sampling performance without any safety constraints)
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How does Thompson Sampling work?

A Bayesian approach that assumes a prior distribution P(θ) is
available for the demand (e.g., through behavioral studies)

We sample, in each round, a parameter θt from this distribution
We choose the best possible price pt that minimizes cost assuming
the true demand parameter is θt

We observe a noisy version of the load response

`?(pt) =
Q∑

i=1
ai(θ,pt)`?

i (pt)

We update the distribution P(θ) based on our observation

Question: How do we ensure grid safety?
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Reliability-aware MAB formulations

Aggregator’s problem

min
pt

T∑
t=1

g(`?(pt),dt)

s.t. h(`?(pt),dt) ≤ 0 (dist flow constraints)

where

`?(pt) =
Q∑

i=1
ai(θ,pt)`?

i (pt)

Potential approaches to ensure safety:
Lagrangify the constraint (relaxation)
Ensure the constraints hold with high probability



Numerical experiment

`
P
i,t : Active power demand at node i

`
Q
i,t : Reactive power demand at node i

sP
i,t : Active power generation at node i

sQ
i,t : Reactive power generation at node i

f P
i,t : Active power flow on line i

f Q
i,t : Reactive power flow on line i

Smax
i : Apparent Power Limit of line i

nf : Likelihood of power flow constraint violations

P[(f P
i,t )2 + (f Q

i,t )2 ≤ (Smax
i )2] ≥ 1 − nf



Numerical experiment: case 1

Apparent Power Line Flow Limit violation ratios:
Constrained case: 0.0017
Unconstrained case: 0.1177



Numerical experiment: case 2



Will discuss how this helps security in future work presentation

Let’s briefly look at the distributed scheme now
Ramtin will discuss the decentralized scheme
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Economic distpatch of distributed energy resources

Individual agents are selfish price takers. They maximize payoff.
Price responsive demand:

max
dj

Uj(dj)− pTdj

Generators:
max

gv
pTgv − Cv(gv)

Welfare maximization (economic dispatch) problem

max
d,g

∑
j∈J

Uj(dj)−
∑
v∈V

Cv(gv)

s.t. 1Td = 1Tg (demand supply balance)
H(d− g) � c (line capacity)

Constraints can be replaced with convexified distribution OPF models
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Market prices

Welfare maximization (economic dispatch) problem

max
d,g

∑
j∈J

Uj(dj)−
∑
v∈V

Cv(gv)

s.t. 1Td = 1Tg (demand supply balance)
H(d− g) � c (line capacity)

Why would selfish users follow the solution of this optimization problem?

“Pricing” the constraints → Locational Marginal Prices
Based on the Lagrange multipliers of the first and second constraint, we
can define the market clearing prices at each bus that maximize welfare:

p = γ1 + HTµ

But no single entity knows Uj(dj) (and potentially Cv(gv))! So what should we do?
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Decentralized calculation of prices

Welfare maximization (economic dispatch) problem

max
d,g

∑
j∈J

Uj(dj)−
∑
v∈V

Cv(gv)

s.t. 1Td = 1Tg (demand supply balance)
H(d− g) � c (line capacity)

In dual decomposition the constraints are “priced” and then the dual
problem is solved → dual problem solved via decentralized schemes



Distributed calculation of prices

Welfare maximization (economic dispatch) problem

max
d,g

∑
j∈J

Uj(dj)−
∑
v∈V

Cv(gv)

s.t. 1Td = 1Tg (demand supply balance)
H(d− g) � c (line capacity)

Dual-decomposition based approach:
Fusion center updates p(k) = γ(k)1 + HTµ(k) (say using dual
subgradient methods)
Given prices, each individual user solves:

max
d(k)

j

Uj(d(k)
j )− pTd(k)

j , max
g(k)

v

p(k)Tg(k)
v − Cv(g(k)

v )

and shares d(k)
j and g(k)

v with fusion center



The attack surface for distributed schemes

Dual-ascent based approach
Fusion center updates p(k) = γ(k)1 + HTµ(k) (say using dual
subgradient methods)
Given prices, each individual user solves:
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j , max
g(k)

v

p(k)Tg(k)
v − Cv(g(k)

v )

and shares d(k)
j and g(k)

v with fusion center

Alternatively, we can also perform a gradient descent/ascent on the
primal/dual variables (a primal/dual approach)

A man-in-the-middle attack may easily drive the algorithm to diverge,
resulting in an unstable system → true for any NUM formulation
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Attack-resilient network utitlity maximization?

...

Central Node

Agent i Agent j

get price

send demand/gen Attacked!



Attack-resilient network utitlity maximization?

Assume some of the di iterates are adverserially chosen by an attacker in
the following classical problem:

min
di∈Rd ,∀i

1
N

N∑
i=1

Ui(di)

s.t. gt

(
1
N

N∑
i=1

di

)
≤ 0, t = 1, ...,T ,

di ∈ Ci , ∀i.

Important observation: the dual ascent iteration would depend only on
the emperical mean d(k) = 1

N
∑N

i=1 d(k)
i .

The trick
Apply recent techniques from robust statistics to estimate the correct
mean for unaffected agents in the presence of byzantine attacks.
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Overall idea

Under Byzantine attack → impossible to optimize the original
problem since the contribution from attacked agents becomes
unknown to the fusion center → Focus only on trustworth agents:

min
di∈Rd ,∀i∈H

1
|H|

∑
i∈H

Ui(di)

s.t. gt

(
1
N

N∑
i=1

di

)
≤ 0, t = 1, ...,T ,

di ∈ Ci , ∀i ∈ H.

Note that the identity of the trustworthy agents (H) are unknown

We will show that the robustified distributed method converges
geometrically to a neighborhood of the optimal solution, where the radius
of the neighborhood is proportional to the fraction of affected agents



Thank you!


