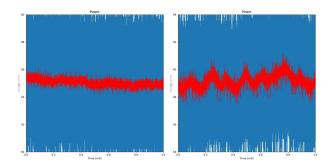
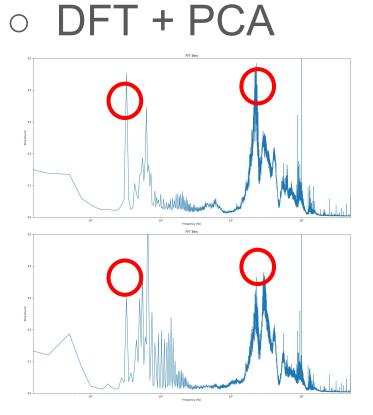
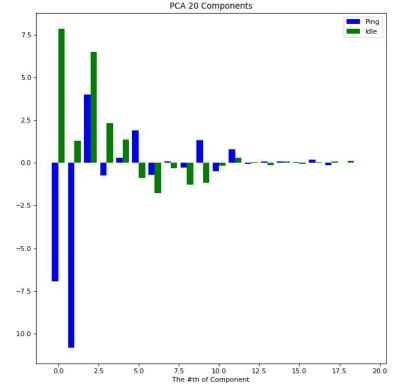
#### Enabling Greybox Fuzzing for Power Distribution System 2019-03-08


# Defining the Problem

- Embedded System
  - Widely used in electricity control sys
- Threaten Model
  - Attacker utilize vulns to take control
- Challenges
  - Firmware/source are not available
  - Have no interface or debug port


## Finding Vulnerability


- Find a crash ~ find a vulnerability
- Method: fuzzing
  - Generate diff. inputs to reach a crash
  - Need prog. state(coverage / crash)
- System states: power side-channel
  - Solve the issues of no interface
  - Diff. state shows diff. power trace

## **Previous Result**



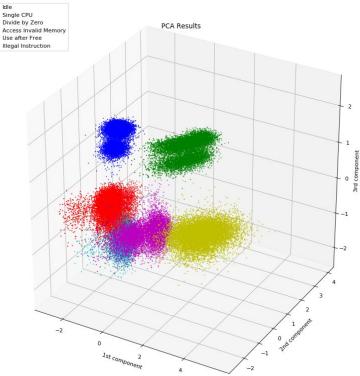
Distinguishing state of idle & ping





# Data Collection

Data-Acquisition
 NI USB-6361




- 2M/s sampling, 10M pts buffer, cont.
   mode
- D-Link 890L home router
  - 6 states: idle, normal, illegal instr., invd.
     mem access, div by 0, UAF

#### Exp. Results

- Customized Binary

   Measure power
   on diff. states
   -> FFT -> PCA -> SVM -> Evaluate
- Cross-Validation: Accuracy 95+%
  - 10000 samples on each state
  - 3-5 principal components in PCA



## Next Steps

- Applying to real programs
   Build model on sampling data
   Test on traces of real programs
- Use state info to help fuzzing
- Apply our work to more devices
   Arduino, ARM Cortex-M0