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Abstract—The recent development of distribution-level phasor
measurement units, a.k.a. micro-PMUs, has been an important
step towards achieving situational awareness in power distri-
bution networks. The challenge however is to transform the
large amount of data that is generated by micro-PMUs to
actionable information and then match the information to use
cases with practical value to system operators. This open problem
is addressed in this paper. First, we introduce a novel data-driven
event detection technique to pick out valuable portion of data
from extremely large raw micro-PMU data. Subsequently, a data-
driven event classifier is developed to effectively classify power
quality events. Importantly, we use field expert knowledge and
utility records to conduct an extensive data-driven event labeling.
Moreover, certain aspects from event detection analysis are
adopted as additional features to be fed into the classifier model.
In this regard, a multi-class support vector machine (multi-SVM)
classifier is trained and tested over 15 days of real-world data
from two micro-PMUs on a distribution feeder in Riverside,
CA. In total, we analyze 1.2 billion measurement points, and
10,700 events. The effectiveness of the developed event classifier
is compared with prevalent multi-class classification methods,
including k-nearest neighbor method as well as decision-tree
method. Importantly, two real-world use-cases are presented
for the proposed data analytics tools, including remote asset
monitoring and distribution-level oscillation analysis.

Keywords: Machine learning, distribution synchrophasors, sit-
uational awareness, event detection, event classification, Big-Data.

I. INTRODUCTION

The proliferation in distributed energy resources, electric
vehicles, and controllable loads has introduced new and un-
predictable sources of disturbance in distribution networks.
This calls for developing new monitoring systems that can
support achieving situational awareness at distribution-level;
thus, allowing the distribution system operator to make the
best operational decisions in response to such disturbances.

Traditionally, there have been three major challenges in
achieving situational awareness in power distribution systems.
First is the lack of high resolution measurements. Metering in
distribution systems is often limited to supervisory control and
data acquisition (SCADA) at substations with minutely report-
ing intervals. As for smart meters, their report measurements
once every 15 minutes or hourly. Second is the lack of accurate
and up-to-date models for most practical distribution circuits.
Third, due to the lower voltage and the larger number and
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variety of utility and customer equipment, distribution systems
are subject to a huge number of events on a daily basis.

The first challenge above has recently been resolved by the
advent of micro-PMUs [1]. A typical micro-PMU is connected
to single- or three-phase distribution circuits to measure GPS
time-referenced magnitudes and phase angles of voltage and
current phasors at 120 readings per second. Since 2015, several
micro-PMUs have been installed at pilot test sites in the state
of California, including some in the city of Riverside [2].

This paper makes use of real-world micro-PMU data from
a feeder in Riverside, CA, see Fig. 1. It seeks to address the
second and the third challenges listed above. Specifically, we
propose a novel model-free situational awareness framework
for power distribution systems to turn micro-PMU data in to
actionable information for tangible use cases. This is done
by introducing a novel data-driven event detection technique
as well as a novel data-driven event classification technique.
Event detection is applied to eight non-linearly dependent data
streams for each micro-PMU, including voltage magnitude,
current magnitude, active power, and reactive power. Event
classification is done by extracting the inherent features of
detected events, and by constructing an algorithm that can
learn from and make predictions of various events. The main
contributions in this paper can be summarized as follows:

1) A novel situational awareness framework is introduced
for power distribution systems using micro-PMU data,
that is model-free; it works by going through a se-
quence of event detection, event classification, and event
scrutinization efforts to transform the large amount of
measurement data from micro-PMUs to information that
are useful for distribution system operators.

2) The approach in this paper makes use of field expert
knowledge and utility records in order to conduct an
extensive data-driven event labeling for micro-PMU
data. The detected events are labeled according to event
zone and event type. As for the event detection phase
prior to event labeling, our approach is comprehensive;
it involves moving windows to help compensate the lack
of information about the start time of each event. It also
involves dynamic window sizes to help compensate the
lack of information about the duration of each event.

3) Different feature selection approaches and different clas-
sification methods are examined and compared, includ-
ing multi-SVM, k-nearest neighbor, and decision-tree,
with considering certain aspects of events from micro-
PMUs, e.g., uneven datasets and features of multi-stream
signals. It is shown that the use of the proposed detection
features, such as detection window and detection indica-
tor, is critical, regardless of the method of classification.
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Fig. 1. The real-world distribution feeder that is studied in this paper.

It is also observed that multi-SVM is a better classifier
compared to k-NN and DT in this particular application
domain, whether or not we use the detection features.

4) Two important real-world use-cases are proposed and
investigated, namely remote asset monitoring and
distribution-level oscillation analysis. The first use-case
allowed us to measure the internal phase imbalance
in a 900 kVAR capacitor bank as well as a potential
malfunction in its Volt/VAR controller. The second use-
case also allowed us to identify the source location and
the frequency of a class of oscillation events that occur
on the understudy distribution feeder.

The early studies on micro-PMUs focused on innovative
case studies, e.g., in [2]–[7]. In [8], a model-based event
detection method is proposed to detect changes in the ad-
mittance matrix of the distribution grid using micro-PMUs
data. However, model-based techniques are often prone to
failure due to lack of model accuracy, particularly in case
of detecting power quality events. Detecting partially-labeled
events in micro-PMU data is proposed in [9]–[12]. However,
given the complexity of distribution systems, it is difficult for
utilities to pre-determine the variety of distribution-level events
[13]. Thus, relying on expert knowledge and labeling events
at event detection phase may inevitably result in overlooking
some events. To resolve this issue, we propose a model-free
event detection approach to capture unlabeled data.

In the context of event classification in power distribution
systems, prior studies have classified the various causes of
fault events [14]–[16], and power quality events [17], [18].
However, broadly speaking, the current literature is still limited
when it comes to studying large-scale real-world micro-PMU
data sets; therefore, the challenges that may arise in practical
event classification problems are yet to be understood and
addressed. Finally, in [19], classifiers are trained to iden-
tify malfunctioned capacitor bank switching and malfunc-
tioned on-load tap-changer switching events using data from
hardware-in-the-loop simulations. The transient signatures of
these malfunctions are derived by simulating different test
systems and test scenarios. In contrast, the labeling in this
paper is done by using real-world data combined with field
knowledge from utility staff and utility event logs.

II. DATA-DRIVEN EVENT DETECTION

Let Di := [d1, ..., dn]
T denote a sequence of measurements

from a micro-PMU, such as current magnitude on one phase,
where n is the number of observation samples in the sequence.
Subscript i is the index of the data sequence within the overall

micro-PMU data stream. We define MADi as the median
absolute deviation (MAD) in data sequence Di as follows:

MADi = γ ·M
[
|Di −M [Di]|

]
, (1)

where M [·] and |·| denote median and absolute values. A
typical value for coefficient γ is 1.4826 [20]. In this study,
we detect an event within data sequence Di if there exists a
data point k = 1, . . . , n for which any of the following holds:

dk 6M [Di]− ζ−MADi

M [Di] + ζ+MADi 6 dk,
(2)

where ζ− and ζ+ denote the threshold to detect overshoot and
undershoot in the data sequence, respectively. Here, M [Di]−
ξ−MADi and M [Di]+ξ

+MADi denote the lower-bound and
the upper-bound margins for data sequence Di, respectively.
We define an indicator function I{·} such that I{Di} = 1, if
the condition in (2) holds for data sequence Di; and I{Di} = 0
otherwise. Note that, the above approach to detect an event in
a micro-PMU data sequence is a statistical anomaly detection
technique which uses the absolute deviation around median
test. Other statistical anomaly detection methods could also
be used, such as the extreme studentized deviate test, or the
standard deviation around mean value test, c.f. [20].

The choice of parameters ζ− and ζ+ and the size of the
data sequence window n have impact on the performance of
the detection method. While ζ− and ζ+ are often selected em-
pirically, choosing the right window size n is very challenging.
In fact, we observed that it may not be possible to detect all
events based on only one value for parameter n.

In order to overcome the above challenges, we propose to
use a dynamic window size as well as a moving window such
that we can detect as many events as possible. On one hand,
the dynamic window size can help to compensate the lack of
information about the duration of each event. On the other
hand, the moving window can help to compensate the lack of
information about the start time of each event.

The impact of applying dynamic window sizes and moving
windows is shown in Fig. 2. Here, the entire data stream takes
100 seconds. Three major events can be visually detected, with
start time stamps t1, t2, and t3. We can see that different events
have different natures and different lengths. The first event is
long lasting. It can be detected either at its step-up edge or at
its step-down edge; or both. The second event includes some
transient oscillations. The third event is a momentary spike.

Fig. 2(a) shows the case where the window size is fixed at
n = 600 micro-PMU samples, i.e., five seconds. Therefore,
in the 100 seconds of data shown in this figure, there exist
20 = 100/5 upper-bound and lower-bound margins of the
form in (2). Only the third event at time t3 is detected in
this case. Fig. 2(b) shows the case where there is a second
window of the same size, a moving window, that is shifted by
300 samples, i.e., half of the window size. Therefore, besides
those 20 upper-bound and lower-bound margins that we saw in
Fig. 2(a), there are additional 20 upper-bound and lower-bound
margins in this figure. Accordingly, for each micro-PMU
sample, there exist two upper-bound margins and two lower-
bound margins in Fig. 2(b). The new upper-bound and lower-
bound margins in Fig. 2(b) can detect the first event at time t1.
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Fig. 2. Effect of moving window and dynamic window size on event detection: (a) static window size without moving window: one event is detected at t3;
(b) static window size with moving window: another event is detected at t1; (c) dynamic window size with moving window: all three events are detected.
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Fig. 3. (a) The percentage of detected events; (b) Computation time.

Fig. 2(c) shows the windows of n = 120, 360, 600, 840, 1080
samples for their sizes, where each window is also moved
by half of its own size. The window sizes are 1, 3, 5, 7,
and 9 seconds, respectively. Note that, for each micro-PMU
sample in this figure, there exist 10 upper-bound margins and
10 lower-bound margins. As it can be seen from this figure,
by applying both moving windows and dynamic window sizes,
we can detect all three events.

Both dynamic window sizes and moving windows are nec-
essary to assure detecting all events. This point is illustrated in
Fig. 3(a). The percentage of correctly identified events versus
the window size are shown in this figure; for both static and
moving window types. The micro-PMU data stream in this
example takes one day and includes 564 events. We can see
that the use of moving window is always more effective than
the use of a static window. No single window size can detect
all events. However, collectively, a combination of different
window sizes and moving windows can detect all 564 events.
Also, Fig. 3(b) shows the computation time corresponding
to static windows and moving windows for different window
sizes. As it can be seen in this figure, in each window size, the

computation time of the moving windows is twice of the static
window. Also, as expected, the computation time decreases as
the detection method is applied to wider window sizes.

III. EVENT LABELING AND FEATURE SELECTION

Given the events that are captured by using the event
detection method in Section II, in this section, we conduct a
comprehensive event labeling and feature selection approach.

A. Two-Layered Event Labeling

One can label power system events based on different
aspects of their characteristics. Here, we seek to label the
events according to event zone and event type.

1) Layer 1 Labeling based on Event Zone: In this first layer
of classification, each event can take one of the below labels:

• Class I. Events initiated from upstream of micro-PMU 1,
i.e., at transmission-level or another distribution feeder;

• Class II. Events initiated from downstream of micro-PMU
2, i.e., at customer location that hosting micro-PMU 2;

• Class III. Events initiated from somewhere between the
two micro-PMUs across the distribution feeder of interest.

An example for a Class I event is shown in Fig. 4.
Class I events often appear as sustained steps or temporary
fluctuations in voltage magnitudes at both feeder-level, seen
by micro-PMU 1, and customer-level, seen by micro-PMU 2.
However, they do not cause any major change in the current
magnitudes. Class I events could be due to transformer, capac-
itor bank, generator, or load switching at sub-transmission or
transmission networks. They could also be due to momentary
faults on another neighbouring distribution feeder, e.g., see [2].

An example for a Class II event is shown in Fig. 5.
Class II events often appear as sustained steps or temporary
fluctuations in voltage magnitude, current magnitude, active
power, and reactive power at customer level, seen by micro-
PMU 2. Depending on the size of the event, the event signature
is noticeable also in the measurements at the feeder level,
seen by micro-PMU 1. Class II events could be due to load
switching, such as motor and HVAC loads, DER switching,
such as PVs and batteries, among other customer-level causes.

An example for a Class III event is shown in Fig. 6.
Class III events often appear as sustained steps or temporary
fluctuations in voltage magnitude, current magnitude, active
power, and reactive power at feeder-level, seen by micro-PMU
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Fig. 4. An example Class I event: (a) and (e): current; (b) and (f): voltage; (c) and (g): active power; (d) and (h): reactive power. First row corresponds to
the measurements from micro-PMU 1. Second row corresponds to the measurements from micro-PMU 2.
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Fig. 5. An example Class II event: (a) (h) are defined the same way as in Fig. 4.
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Fig. 6. An example Class III event, i.e., Class III.A: (a) (h) are defined the same way as in Fig. 4

1. They may also affect the voltage magnitude at customer-
level, seen by micro-PMU 2. However, they do not have a
major impact on current magnitude, active power, and reactive
power at customer-level. Class III events can be due to a
wide verity of causes, such as distribution-level transformer
and capacitor bank switching, lateral fuse blowing, primary
protection operation, load switching, DER switching, etc.

2) Layer 2 Labeling based on Event Type: Each event
can be further labeled based on its type. This can be done
for all events, whether they are in Classes I, II, or III.
However, labeling the type of Class I events is not of interest;

because distribution-level PMUs are not intended to investigate
transmission-level events. Labeling the type of Class II events
is not of great interest either; because the customer that hosts
micro-PMU 2 is being monitored directly. In fact, it is only
Class III events that are of interest to be further classified;
because those are the events that occur across the distribution
feeder. Thus, in this section, we define a second layer for
labeling Class III events, as follows:

• Class III.A. Capacitor bank switching; e.g., see Fig. 6;
• Class III.B. Distribution-level oscillation, e.g., see Fig. 7;
• Class III.C. Other events, e.g., see Fig. 8.
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Fig. 7. An example Class III event, i.e., Class III.B: (a) (h) are defined the same way as in Fig. 4
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Fig. 8. An example Class III event, i.e., Class III.C: (a) (h) are defined the same way as in Fig. 4

TABLE I
PROPOSED FEATURES FOR CLASSIFICATION

Feature Feature Description Number

Single-stream Statistics std(Di) 8
Difference |dn − d1| 8

Multi-stream Correlation corr(Di, Dj) 28

Detection Detection Window ω 1
Detection Indicator I{Di} 8

The above distinction is based on the fact that capacitor
bank switching is an important event in distribution systems
and the subject of several studies [2], [21]. Oscillation events
too are important. There is currently a limited understanding
of the oscillation events within distribution systems [1].

B. Feature Selection

A crucial task in any classification problem that involves
Machine Learning is to choose adequate quantifiable features
that can help distinguish classes. In this paper, we propose the
features in Table I, which consists of three broad categories:

• Single-Stream Features: These are quantifiable prop-
erties that are derived from single data streams Di ∈
{I, V, P,Q}. They could be obtained by applying the
mean, standard deviation, median, difference, or other
operators to each of such single data streams within the
detected window. In this study, we use standard deviation
and absolute difference. Note that, notations d1 and dn
denote the first and the last data samples in Di.

• Multi-Stream Features: These are quantities that are
defined for various combinations of two synchronized
data sequences Di, Dj ∈ {I, V, P,Q}, whether from
the same micro-PMU or two micro-PMUs. Different
operators could be applied to the data streams. Here, we
use the correlation between any two of the eight available
data sequences to construct the multi-stream features.

• Detection Features: The way that an event is detected
can itself carry useful information to classify the event.
We use the following detection features for classification:
1) the smallest window at which the event was detected,
denoted by ω; and 2) the binary detection indicators
I{Di} for Di ∈ {I, V, P,Q}, for both micro-PMUs.

IV. DATA-DRIVEN EVENT CLASSIFICATION

We now use the event labeling and feature selection strate-
gies in Section III to train different types of event classifiers.

A. Binary-SVM Classifier

Consider m events that are detected by using the method
in Section II. We use these events to train an SVM classifier.
For each training event i = 1, . . . ,m, let Xi denote the 53×1
vector of extracted features, where 53 = 28 + 3× 8 + 1, as in
Table I. Also, let yi denote the assigned label for event i.

When it comes to binary classification, there are only two
types of labels. We define yi ∈ {−1, 1}, where yi = −1 is the
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label for the first class; and yi = 1 is the label for the second
class. Let WTX+b = 0 denote a separating hyperplane in the
53×53 feature space that separates the two classes, where W
is a 53×1 coefficients vector, and b is the intercept. The SVM
training problem seeks to find the optimal hyperplane that has
the maximum total distance between the two classes across
the training samples. If the training samples are not linearly
separable, we should add some slack variables so as to turn
the SVM into a soft margin SVM, which is formulated as:

minimize
W,b,ξ

1

2
‖W‖22 + λ

n∑
i=1

ξi (3a)

subject to yi
(
WTXi + b

)
≥ 1− ξi, i = 1, . . . ,m (3b)

ξi ≥ 0, i = 1, . . . ,m, (3c)

where ξi is a slack variable corresponding to training event
i. If yi = −1, then constraint (3b) requires that WTXi +
b ≤ −1 + ξi; and if yi = 1, then constraint (3b) requires
that WTXi + b ≥ 1 − ξi; thus, making WTX + b = 0 a
separating hyperplane with a soft SVM margin of length 1−
ξi on both sides. Parameter λ is a tuning parameter. If the
extracted features of a training event results in a point that
falls on the correct side of the separating hyperplane with
respect to the label of the event, then 0 ≤ ξi < 1; otherwise
ξi ≥ 1, c.f. [22], [23].

B. Multi-SVM Classifier

A multi-class classification problem can be decomposed into
several binary classification problems. This can be done by
using methods such as one-against-one (OvO), one-against-all
(OvA), directed acyclic graph SVM (DAGSVM), and binary
tree of SVM (BTSVM) [22], [23]. In this paper, we use OvA
decomposition. We construct c binary SVM problems, where
c is the number of classes. Each binary SVM problem obtains
a separating hyperplane to separate one of the c classes from
the rest of the c− 1 classes. We have c = 3 for both Layer 1
and Layer 2 classification; see Section IV.A. In total, six sets
of separating hyperplanes are trained; three sets for each layer.
Once the training process is complete, the decision on class
prediction for testing event i is made as [22]:

yi = arg max
l=1,...,c

(
WT
l Xi + bl

)
. (4)

In (4), we say that event i is predicted to belong in class l,
which has the largest value of the decision function.

An alternative training separating hyperplanes in the form
of WT

l X+bl is to use non-linear classifiers, such as separating
quadratic planes [24]. However, our experimental results based
on real-world data have shown that there is no advantage in
using nonlinear classifiers which are computationally more
complex. What matters the most is to choose the right classi-
fication features, i.e., as in Table I, as we will further discuss
in Section V.

C. K-NN and Decision-Tree Classifiers

There are other classifiers that one can consider for this
study. One example is the k-nearest neighbors (k-NN) classi-
fier [25]. Another example is the decision-tree (DT) classifier

[26]. The k-NN method classifies an unknown sample based
on the known labels of its k-closet, e.g., in the Euclidean
sense, neighbors [25]. As for the DT classifier, a decision
tree is constructed by creating branches as conjunctions of
features as well as leaves as class labels. Then, a test data sam-
ple is classified based on branches conjunctions [26]. These
additional methods are not discussed here in details due to
space limitation. However, detailed performance comparisons
are provided across these methods later in Section V.

D. Metrics to Compare Different Classifiers

First, consider the binary classifiers as in Section IV.B. The
correctness of each classifier can be evaluated by computing
the following four quantities: True Positive (TP), which is the
number of events that are correctly classified to be inside of
the target class; True Negative (TN), which is the number of
events that are correctly classified to be outside of the target
class; False Positive (FP), which is the number of events
that are incorrectly classified to be inside of the target class;
and False Negative (FN), which is the number of events that
are incorrectly classified to be outside of the target class.
Accordingly, for each binary classifier, we can calculate the
following five standard performance evaluation metrics [27]:

TPR =
TP

TP + FN
, (5)

FPR =
FP

FP + TN
, (6)

PPV =
TP

TP + FP
, (7)

FOR =
FN

FN + TN
, (8)

MCC=
TP × TN − FP × FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
,

(9)
where TPR, FPR, PPV , FOR, and MCC stand for the
true positive rate, false positive rate, positive predictive values,
false omission rate, and Matthews correlation coefficient,
respectively. It should be noted that, in some machine learning
literature, such as in [27], TPR, PPV , and FPR are also
known as recall, precision, and fall-out metrices, respectively.
The overall accuracy of a binary classifier can be assessed also
by using the following metric:

F1Score =
(TPR−1 + PPV −1

2

)−1

. (10)

Next, consider the multi-class classifier, as in Section IV.C.
The recall, precision, and F1score for multi-class classifier
can be calculated by using either Macro-averaging or Micro-
averaging [27]. Macro-averaging simply normalizes the sum
of all metrics. Thus, Macro-averaging does not consider the
number of events in each class. Micro-averaging however
computes the metrics from sum of TP, TN, FP, and FN values
of all classes. Thus, Micro-averaging takes the frequency of
classes into consideration. Accordingly, one can prove that if
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Fig. 9. Target classes and separating hyperplanes of Layer I in a 3×3 feature
space. The circles indicate training data points.

Micro-averaging is used, then recall, precision, and F1Score,
all become equal, as follows:

Recall =

∑c
l=1 TPl∑c

l=1

(
TPl + FNl

) . (11)

V. CASE STUDIES

The proposed event detection and event classification meth-
ods are applied to data from the two micro-PMUs in Fig.
1, during 15 days in July 2016. In total, we analyzed 1.2
billion measurement points, and 10,700 events. Only 1% of the
measurements demonstrated any considerable event. Among
the events detected, 1802, 2228, and 6670 events are labeled
in Class I, Class II, and Class III, respectively. Among the
6670 Class III events, 27 events are labeled as Class A and
43 events are labeled as Class B. The training dataset includes
4.09% and 4.06% of all Layer I and Layer II data, respectively.

A. Classifier Design: A Preliminary Illustrative Example

In this section, a multi-SVM classifier is designed to sepa-
rate the events in Layer I. Recall from Sections III and IV that
the resulting three separating hyperplanes are in the 53 × 53
feature space that cannot be visualized. Therefore, in order to
develop an example that is easy to illustrate, we use only the
three most dominant features, out of 53, so as to visualize the
separating hyperplanes in a 3×3 space, as shown in Fig. 9. In
this figure, x1 is the correlation coefficients between reactive
power of the two micro-PMUs, x2 is the standard deviation of
the current magnitude of micro-PMU 1, and x3 is the standard
deviation of active power at micro-PMU 2. The total number of
training events is 438. We can see that the events are properly
separated across the three classes. For instance, Hyperplane I
separates events corresponding to Class I from the rest of the
events. The overall classifier training accuracy is 91%.

Next, the above separating hyperplanes are applied to the
test dataset, and the decision on class prediction is made using
(4). Fig. 10 shows the predicted classes across 10262 test
events. The overall classifier testing accuracy is 89%. Thus,
several events in this preliminary example are not predicted in
the right classes, mainly due to not using all 53 features.

B. Classification Results and Impact of Detection Features

In order to demonstrate the importance of features, in this
section, we separately examine the following two cases:

Fig. 10. Predicted classes of Layer I obtained by the use of the separating
hyperplanes in Fig. 9. The circles indicate test data points.
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Fig. 11. Confusion matrix for test data of Layer I classification, i.e., with
respect to event zone, obtained by various classifiers: (a) multi-SVM classifier,
Case 1; (b) multi-SVM classifier, Case 2; (c) k-NN classifier, Case 1; (d) k-
NN classifier, Case 2; (e) DT classifier, Case 1; (f) DT classifier, Case 2.

• Case 1: Classification without detection features.
• Case 2: Classification with detection features.

Interestingly, the overall multi-SVM classifier training accu-
racy is 100% in both cases; not shown here. However, when
it comes to using the classifiers to identify the classes for
test events, the performance is considerably better for Case 2
than Case 1. The confusion matrices for the multi-SVM, k-
NN, and DT classifiers are shown in Fig. 11, for both Case
1 and Case 2. Parameter k for the k-NN classifier is set to
3 based on an exhaustive search. All results are based on the
data for test events. Each confusion matrix shows the recall
metric in percentage for binary-classifiers as well as overall
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TABLE II
PERFORMANCE METRIC IN PERCENTAGE CORRESPONDING TO THE FIRST

BINARY-CLASSIFIERS IN LAYER I CLASSIFICATION.

Classifier Case TPR FPR PPV FOR MCC F1Score

SVM 1 95.23 0.66 96.63 0.95 95.12 95.93
2 100 0.09 99.53 0 99.72 99.76

k-NN 1 97.23 1.31 93.73 0.54 94.59 95.49
2 99.24 0.50 97.54 0.15 98.06 98.38

DT 1 74.60 0.55 96.46 4.89 52.35 84.14
2 100 0.02 99.88 0 99.93 99.94

TABLE III
PERFORMANCE METRIC IN PERCENTAGE CORRESPONDING TO THE

SECOND BINARY-CLASSIFIERS IN LAYER I CLASSIFICATION.

Classifier Case TPR FPR PPV FOR MCC F1Score

SVM 1 97.52 0.64 97.57 0.65 96.90 97.54
2 99.71 0.02 99.90 0.07 99.76 99.81

k-NN 1 96.31 0.59 97.72 0.96 96.23 97.01
2 98.55 0.27 98.96 0.38 98.43 98.76

DT 1 88.65 0.39 98.34 2.91 91.77 93.24
2 97.61 0.01 99.95 0.62 98.46 98.77

classification recall using Micro-averaging.
Tables II to IV show the performance metrics in percentage

for binary classifiers in Layer I. We can make two important
observations from Fig. 11 and Tables II to IV. First, the
performance is always better in Case 2 compared to Case
1. In other words, the use of detection features is indeed
critical, regardless of the method of classification. Second, the
multi-SVM classifier outperforms the k-NN classifier and the
DT classifier in both cases. In other words, the multi-SVM
classifier is a better choice in this study, whether or not we
use the detection features.

Based on the above results, for the rest of this paper, we
always include the detection features, i.e., we use Case 2.
It should be noted that the training accuracy of multi-SVM
classifier is 100% in both cases. The results however are not
shown here due to space limitation.

C. Classification Results for Second Layer

Unlike in Sections V.A and V.B, where our focus was on
Layer I classification, i.e., with respect to event zone, in this
section, we examine the performance for Layer II classifica-
tion, i.e., with respect to event type. The Layer II events that
we observed in the real-world micro-PMU data demonstrated
a very uneven distribution across different classes. Only 2 and
4 events out of 271 Class III training events belong to Class
III.A and Class III.B, respectively. Also, only 0.4% and 0.6%
of events in the test dataset are in Class III.A and Class III.B,
respectively.

TABLE IV
PERFORMANCE METRIC IN PERCENTAGE CORRESPONDING TO THE THIRD

BINARY-CLASSIFIERS IN LAYER I CLASSIFICATION.

Classifier Case TPR FPR PPV FOR MCC F1Score

SVM 1 99.15 2.07 98.75 1.40 97.21 98.95
2 99.92 0.02 99.98 0.12 99.87 99.95

k-NN 1 98.45 1.65 98.99 2.53 96.62 98.72
2 99.40 0.44 99.73 0.97 98.86 99.56

DT 1 98.98 17.24 90.48 1.99 85.05 94.54
2 99.96 1.29 99.22 0.05 98.92 99.59
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Fig. 12. Confusion matrix for Layer II classification, i.e., with respect to
classifying event type: (a) multi-SVM classifier, training data; (b) multi-SVM
classifier, test data; (c) k-NN classifier, test data; (d) DT classifier, test data.

TABLE V
PERFORMANCE METRIC IN PERCENTAGE CORRESPONDING TO THE FIRST

BINARY-CLASSIFIERS IN LAYER II CLASSIFICATION.

Classifier TPR FPR PPV FOR MCC F1Score
SVM 100 0.11 78.12 0 88.33 87.71
k-NN 100 0.04 89.28 0 94.46 94.33
DT 0 0 N/A 0.39 N/A N/A

Figs. 12(a) and (b) show the confusion matrices corre-
sponding to the training data and the test data for Layer
II, respectively. The recall metric for the binary-classifiers
and multi-class classifier are presented in confusion matrices.
Similarly, Figs. 12(c) and (d) show the confusion matrices of
the k-NN classifier and DT classifier for Layer II events. Due
to space limitation, the confusion matrices are shown only for
the test data. Parameter k for the k-NN classifier is set to 3.

The above results verify the performance of the proposed
classifiers in separating uneven datasets. Also, Tables V to
VII report the performance metrics corresponding to binary-
classifiers of Layer II. From these results, we can conclude that
the performance of the k-NN classifier is slightly better than
the multi-SVM classifier in this particular case; although, there
is a caveat about the k-NN classifier, which we will explain
in the next paragraph. As for the DT classifier, we can see in
the last rows of Tables V to VII that it fails to classify the
events in Class III.A. Such events are incorrectly classified as
Class III-B events.

We saw in the previous paragraph that the k-NN method can

TABLE VI
PERFORMANCE METRIC IN PERCENTAGE CORRESPONDING TO THE

SECOND BINARY-CLASSIFIERS IN LAYER II CLASSIFICATION.

Classifier TPR FPR PPV FOR MCC F1Score
SVM 94.87 0.11 84.09 0.03 89.25 89.15
k-NN 97.43 0.07 88.37 0.01 92.74 92.68
DT 100 72.32 45.88 0 67.49 62.90
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TABLE VII
PERFORMANCE METRIC IN PERCENTAGE CORRESPONDING TO THE THIRD

BINARY-CLASSIFIERS IN LAYER II CLASSIFICATION.

Classifier TPR FPR PPV FOR MCC F1Score
SVM 99.77 3.12 99.96 18.42 88.77 99.87
k-NN 99.88 0 100 9.85 94.89 99.94
DT 99.62 4.68 99.95 28.23 82.51 99.78
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Fig. 13. Error for the k-NN versus parameter k, in classifying Layer II events:
(a) overall classification, (b) classifying Class III.B.

perform slightly better than the multi-SVM method. However,
there is a catch, such performance is highly sensitive to the
choice of parameter k. What was shown earlier was in fact
the best possible result for the k-NN method. To see this, the
impact of parameter k on the overall classification performance
as well as the performance in classifying Class III.B are shown
in Fig.13(a) and (b), respectively. As it can be seen for both
cases, the minimum error is achieved by setting k = 3. The
results are poor in other choices of k. In particular, the error
in classifying Class III.B can be very high if parameter k is
not carefully selected; thus, the results for the k-NN method
are not as robust as those for the multi-SVM method.

D. First Application: Remote Asset Monitoring

In this section, we scrutinize the Class III.A events that are
obtained by the method in Section V.C to achieve situational
awareness by monitoring the capacitor bank. The cap bank in
this study is rated 900 kVAR. It is switched by a vacuum
circuit breaker (VCB). The VCB is controlled by a Volt-
VAR controller, which switches on and off based on per-phase
low-voltage and high-voltage override thresholds. The event
classification method in Section V.C identified 25 cap bank
switching events out of the total 10,700 events being examined.

Typically, for a wye-floating capacitor bank, the strategy for
switching-off is to open contacts in two steps; first, opening
one phase at zero-crossing of its current; second, opening the
two other phases at quarter of a cycle later, at 90◦ relative
to zero-crossing of the first phase [21]. Fig. 6(a) in Section
III shows that there is an overshoot and an undershoot in
current magnitude of phase A and phase B, respectively, while
phase C experiences an ideal switching with no transient in
current magnitude. Also, in Fig. 6(d), reactive power of phase
C increases due to capacitor bank switching-off on phase C,
while after about 200 msec dead-time, reactive power increases
on phases A and B. Thanks to the event detection approach in
Section II, this issue is further studied across 25 switching-off
events that occurred across two weeks. The results are shown
in Fig. 14. We can confidently conclude that the capacitor bank
switching is ideal during its first step, but there is always about
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Fig. 14. Capacitor bank switch-off events for the first application in Section
V-D: (a) transient current magnitude, (b) duration of transition.
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Fig. 15. Change in reactive power during capacitor bank switching.

20% overshoot and undershoot transients in current magnitude
lasting for 100-200 msec during its second step.

The unbalanced or underrating operation of the capacitor
bank was also investigated during the two weeks of this study.
Fig. 15 shows the change in reactive power compensation
across three phases due to switch-on events. Reactive power
compensation is 288 kVAR on Phase A, 291 kVAR on Phase
B, and 286 kVAR on Phase C. The results are similar during
the switching on events are omitted due to space limitation.

E. Second Application: Event Source Location Identification

In this section, we scrutinize the Class III.B events that
are obtained by our proposed method in Section V.C to
characterize the oscillations on the under-study distribution
feeder. We combine our event detection and classification
results with the event source location identification (ESLI)
method in [4], [28] to pinpoint the location of each oscillation
event. The granularity of location identification is necessarily
limited to 8 zones, as marked on Fig. 1, due to the limited
number of micro-PMU installations; see [4] for more details.
Note that, Z1 and Z8 are the upstream-level and customer-
level zones, i.e., they correspond to Class I and Class II,
respectively.

In total, 43 oscillation events are identified during the two
weeks of this study. For each individual oscillation event, ESLI
calculates the so-called zonal voltage discrepancy ∆Vz for
zones z = 1, . . . , 8; see [4]. An example for applying ESLI to
one of the oscillation events is shown in Fig. 16(a); where the
location of the event is zone Z7, because it has the smallest
zonal voltage discrepancy. Interestingly, we identified that all
the 43 oscillatory events occurred in zone Z7. By applying the
Fourier analysis, we obtained the frequency of all oscillations
at this location. Their histogram is shown in Fig. 16(b).

VI. CONCLUSIONS

The goal of this paper was to start from a stream of raw
micro-PMU data and turn them into information for tangible
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Fig. 16. Oscillation events: (a) zonal voltage discrepancy, (b) frequency.

use cases for power distribution systems. First, a novel model-
free event detection technique is proposed to pick out valuable
portion of data from micro-PMU data streams from a real-
world test site in Riverside, CA. In total, 10,700 events
were detected and examined. Subsequently, a novel data-
driven event labeling technique was combined with different
methods of classification to classify the detected events at two
layers. Interestingly, we concluded that adopting classification
features from the detection process can considerably improve
the overall classification accuracy. Finally, two real-world uses
cases were investigated, namely for remote asset monitoring
and distribution-level oscillation analysis. The results in this
paper could be of value to utilities and system operators.

This study can be extended to active distribution networks
with higher penetration of DERs. While we expect our ap-
proach to perform well with detecting the increased number
of events that may occur due to the increased number DERs,
it may not be easy to label all such new events due to the
limited information about the resources and equipment that
are owned and operated by customers.
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