
1

A Machine Learning Approach to Event Analysis in
Distribution Feeders Using Distribution Synchrophasors
Alireza Shahsavari†, Mohammad Farajollahi†, Emma Stewart‡, Ed Cortez§, and Hamed Mohsenian-Rad†

†Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
‡Grid Integration Group, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

§Riverside Public Utilities, Riverside, CA, USA

Abstract—This paper proposes a machine learning (ML) ap-
proach to detect, identify, and analyze the events that occur
on distribution networks using data streams from real-world
distribution-level phasor measurement units (PMUs). First, we
develop two statistical event detection methods. One is based on
testing absolute values around median and the other one is based
on testing residuals on a non-linear estimation. Both methods use
moving windows as well as dynamic window size. This allows us
to detect events of different types and durations. Next, we use
field expert knowledge to assign labels to the detected events
and subsequently develop a multi-class support vector machine
classifier to classify power quality events. Finally, we apply the
above developed techniques to detect, identify, and analyze the
events in a micro-PMU data stream from a real-world test site in
Riverside, CA. We particularly study the oscillation events that
occur somewhere across the distribution feeder itself, where their
impacts are observed remotely by the available micro-PMUs.

Keywords: Machine learning, event detection classification,
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I. INTRODUCTION

In recent years, power distribution systems are becoming
drastically more complex and more dynamic due to the in-
creasing number of distributed energy resources. Therefore,
there has been a growing interest in the power engineering
community to enhance the level of situation awareness in
distribution networks. However, this goal cannot be achieved
by the existing traditional distribution-level monitoring sys-
tems that are often limited to supervisory control and data
acquisition (SCADA) at distribution substation. The typical
minutely reporting rate of SCADA systems is no longer
sufficient to form the desired level of situation awareness.

Distribution-level phasor measurement units (D-PMUs),
a.k.a., micro-PMUs, have emerged recently and gradually
become commercially available to enhance both precision
and reporting intervals in monitoring distribution networks.
Micro-PMUs provide precise time-stamped GPS-synchronized
reading of voltage and current phasors; on all three phases
and once every 8.333 milliseconds [1]. There is a growing
interest among electric utilities to deploy micro-PMUs in their
distribution networks for different applications, c.f., [1]–[4].

This work was supported by NSF grants 1462530 and 1253516; DoE
grant EE 0008001; UCOP under Grant LFR-18-548175; and NASA MIRO
grant NNX15AP99A. The corresponding author is H. Mohsenian-Rad, e-mail:
hamed@ece.ucr.edu.

A. The Challenges and The Related Literature

The data streams that are generated by micro-PMUs intro-
duce prominent Big-Data challenges to the power distribution
industry. The key to address these challenges is to turn the
micro-PMU data-streams into a set of events that are worth
studying [4]–[6]. This of course requires developing new tools
and techniques that can detect, identify, and analyze the type
of events that occur on distribution networks and recorded by
often only a few available micro-PMUs.

The related literature is still evolving. In [7], a semi-
supervised event detection method is developed to detect
events in micro-PMU data. In [8], the event detection of micro-
PMU data is done based on examining the deviations from
the expected linear relationship between nodal voltages and
line current. In [9], a model-based event detection method is
proposed to detect changes in admittance matrix using micro-
PMUs data. In [10], a model-based event detection method is
developed to detect permanent faults in distribution lines. In
[11], an event classifier is designed to classify partially labeled
events that are extracted from micro-PMU data. Finally, in
[12], event classifiers are developed for malfunctioned capaci-
tor bank switching and malfunctioned voltage regulator events.
The transient signatures of these malfunctions are obtained
from simulations and not from real-world micro-PMUs data
streams.

While the above aforementioned event detection and event
classification methods have already taken a great leap forward
in this field, there is still a gap in the related literature due to
two issues. First, since distribution systems are traditionally
less equipped with high-resolution monitoring capabilities,
the field expert knowledge for labelling the distribution sy-
stem events is still limited; therefore, supervised and semi-
supervised methods often overlook several events. This issue
is also partly due to the natural challenges in reaching out to
utility field experts by those who have the expertise to develop
the data-driven methods in this field. Second, as for the model-
based methods, they are often prone to failure due to lack of
accurate and updated models for distribution systems.

B. Our Approach and Contributions

In this paper, we seek to address the above challenges
toward event analysis in micro-PMU data. Specifically, we
seek to develop new methods to transform extremely large
raw data of micro-PMUs to the type of information that is
useful to distribution system operators. First, we propose two
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Fig. 1. The real-world distribution feeder that is studied in this paper and the
designed Machine Learning application framework. The zones Z1 to Z8 will
explained later in Section IV-C.

novel model-free event detection methods to pick out events
from an ongoing stream of micro-PMU data. The first event
detection method is based on testing absolute values around
median by considering moving window and dynamic window
size. The second event detection method is based on examining
the non-linear relationship between nodal voltage and nodal
current injection. For this purpose a non-linear estimator is
designed that can detect the events by conducting a residue
test. The proposed event detection methods are studied in
several test scenarios based on real-world data. Subsequently,
the detected events are labeled into three categories based on
their root-causes using a novel data-driven event labeling and
using the field expert knowledge. Finally, a multi-class support
vector machine (multi-SVM) classifier is trained to classify the
events.

The effectiveness of the developed event detection and
classification methods is examined on one week of real-
world data, i.e., 1.7418 billion data points, from two micro-
PMUs on a distribution feeder in Riverside, CA, see the
upper-portion of Fig. 1. One micro-PMU is installed at the
feeder-head transformer and one micro-PMU is installed at
a load transformer. The proposed overall machine learning
framework is also shown in the lower-portion of Fig. 1.

Last but not least, in this paper, we particularly look into the
oscillation events that occur somewhere across the distribution
feeder itself and their impacts are observed remotely by
the available micro-PMUs. This particular use case is of
importance in practice because traditionally the oscillations
at distribution-level are not investigated much; as opposed to
the oscillations at transmission-level.

II. TWO MODEL-FREE DATA-DRIVEN
EVENT DETECTION METHODS

A. Method I: Absolute Deviation Around Median

Let Di := [d1, . . . , dn]
T denotes a sequence of measure-

ments from a micro-PMU, e.g., current magnitude, where n
denotes number of observation samples in data sequence i.
Subscript i is the index of the data sequence within the overall

micro-PMU data stream. We define MADi as the median
absolute deviation (MAD) in data sequence Di as:

MADi = γ ·M [|Di −M [Di]|] , (1)

where M [·] and |·| denote the median and absolute value,
respectively. Note that, constant coefficient γ denotes the
underlying distribution in Di, disregarding the abnormality
induced by event. Mostly, it is considered that γ is equal
to 1/φ(0.75), where φ(0.75) is the 0.75 quantile of that
underlying distribution. A typical value for coefficient γ is
1.4826 [13]. There exists an event within data sequence Di

if there is a data point k = 1, . . . , n for which any of the
following inequalities holds:

dk 6M [Di]− ζ−MADi

M [Di] + ζ+MADi 6 dk,
(2)

where ζ− and ζ+ denote thresholds to detect the overshoot
and undershoot in data sequence, respectively. The threshold
in (2) may result in detecting several data points of each event
as event. Thus, we need to revise and replace (2) with

Di 6M [Di]− ζ−MADi

M [Di] + ζ+MADi 6 Di,
(3)

where Di := max{d1, . . . , dn} and Di := min{d1, . . . , dn}.
The choice of parameters ζ− and ζ+ and the size of the data
sequence window n have impact on the performance of the
detection method. While ζ− and ζ+ are often selected empi-
rically, choosing the right window size n is very challenging.
One may ask about the possibility of detecting all events in
one window with no information about event duration as well
as event start time. In order to overcome these challenges, we
propose considering dynamic window size as well as moving
window. On one hand, the dynamic window size can help to
compensate the lack of information about event duration. On
the other hand, the moving window can help to compensate
the lack of information about start time of each event.

Although, in (3), we assure that multiple data points of
each event are not detected as events in one window size,
the dynamic window size and moving window may result in
multiple detection of each event in different windows. Thus,
we define an indicator function I(·), such that If I(Di) = 1
if the condition in (3) holds for data sequence Di; and if
I(Di) = 0 otherwise. The pseudo-code of the proposed data-
driven event detection is presented in Algorithm 1.

The impacts of applying dynamic window size and moving
window are shown on 30 seconds of micro-PMU data in Fig.
2. The data sequence includes two major events at t1 and t2.
Fig. 2(a) shows the case where the window size is fixed at five
seconds, i.e., n = 600 micro-PMU samples. In this case, none
of the events are detected. In Fig. 2(b), the event detection is
conducted for five window sizes n = 120, 360, 600, 840, 1080
with considering moving window equal to the half of the
window sizes, τ = n/2. Accordingly, there are 10 upper-
bound margins and 10 lower-bound margins as shown in Fig.
2(b). As it can be seen from this figure, both events are
detected by considering dynamic window and moving window.
Thus, both dynamic window sizes and moving windows are
necessary to assure detecting all events.
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Algorithm 1 Data-Driven Event Detection
Require: I = [0, . . . , 0]TN×1, γ = 1.4826, n > 0, τ > 0

for all window n do
for all shift value τ do
MADi ← γ ·M [|Di −M [Di]|]
Di ← min{d1, . . . , dn}
if Di 6M [Di]− ζ−MADi then

if I(Di) = 0 then
I(Di)← 1

end if
end if
Di ← max{d1, . . . , dn}
if M [Di] + ζ+MADi 6 Di then

if I(Di) = 0 then
I(Di)← 1

end if
end if

end for
end for

Fig. 2. Effect of moving window and dynamic window size on event
detection: (a) static window size without moving window: one event is
detected at t2; (b) dynamic window size with moving window: both events
are detected.

B. Method II: Residual Test on Non-Linear Estimation

Let Vi := [|v1|, . . . , |vn|]T and Ii := [|i1|, . . . , |in|]T denote
sequences of voltage magnitude and current magnitude from a
micro-PMU, respectively. From Circuit Theory, we know that
in steady-state the relation between |vk| and |ik| at data point
k = 1, . . . , n is as:

sk = |vk| · |ik|, (4)

where sk denotes apparent power at downstream of micro-
PMU. During the transient of events, the (4) includes higher
order harmonics beside the fundamental harmonic.

Let assume that there exists no major event in a window
with n data points. Thus, we can assure that the downstream
load of micro-PMU is almost constant in n data points. A
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Fig. 3. Event detection by estimating current magnitude: (a) current magni-
tude; (b) voltage magnitude; (c) residual.

non-linear estimator can be designed to estimate Ii by solving
the following optimization problem:

minimize
B

∥∥∥Ĩi − Ii∥∥∥
2
, (5)

where Ĩi := [|ĩ1|, . . . , |ĩn|]T is the estimated current magnitude
in data sequence i, as:

Ĩi = b1 +
b2
Vi
. (6)

where B := [b1, b2]T is the regression coefficient vector. If
there exists an event in data sequence i = 1, . . . , n, e.g.,
such as load switching event, during transient of the event,
(4) does not hold. While, it hold for pre-event and post-
event. Consequently, the non-linear estimator, that is designed
only fundamental frequency, fails to estimate the |ik| during
transient period of event. Thus, the residues corresponding to
event data points are larger than those during pre-event and
post-event.

Fig. 3(a) shows the true current magnitude and estimated
current magnitude of micro-PMU 1 during 50 seconds. Here,
the non-linear estimation is conducted every second, i.e., n =
120 micro-PMU data points. The data sequence includes three
major events at t1, t2, and t3. From Fig. 3(a) and (b), it seems
that all three events are load turning on events. From Fig. 3(a),
we can see that the non-linear estimator fails in estimating
current magnitude during these major events. Fig. 3(c) shows
the residues in estimating current magnitude. As it can be seen,
the residues at t1, t2, and t3 are the largest residuals.

Also, Fig. 4(a) shows the true and estimated voltage mag-
nitude of micro-PMU 1 during 50 seconds. The non-linear
estimation is conducted every second to estimate the voltage
magnitude. The data sequence includes two major events at
t1 and t2, the former event is initiated from load switching,
while latter one is a voltage step-down event which may be
initiated from operating a voltage regulator in upstream-level,
see Figs. 4(a) and (b). From Fig. 4(b), we can see that the non-
linear estimator fails in estimating voltage magnitude during
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Fig. 4. Event detection by estimating voltage magnitude: (a) current magni-
tude; (b) voltage magnitude; (c) residual.

these events. Fig. 3(c) shows the residues in estimating voltage
magnitude. As it can be seen, the events at t1 and t2 can be
detected from residue test.

In Figs. 3 and 4, we detect events by considering a fixed
threshold on residues or by applying largest normalized resi-
dual test. One may ask, what is the advantage of considering
a threshold on residues against applying a threshold on data
stream? The answer to this question is that the threshold on
residues is fixed, while if we want to apply a threshold on data
sequence, it should be updated for each window to consider
the steady state changes. Also, the residual test based event
detection method is not sensitive to the estimation window
size. For instance, in Fig. 3, we can obtain almost the same
residues by considering n = 1200 instead of n = 120.

III. SUPERVISED EVENT CLASSIFICATION

Broadly speaking, the events that are captured by using the
event detection methods in Section II can be categories into
three classes:

• Class I. Events initiated from upstream of micro-PMU 1,
i.e., at transmission level or another distribution feeder:
These events are mostly observed as either sustained
steps or temporary fluctuations in feeder-level voltage
magnitude and customer-level voltage magnitude. These
events has no significant effect on current magnitudes and
active powers. The step-down in voltage magnitude may
initiated from switching-off a capacitor bank in upstream-
level or operating a voltage regulator in upstream-level.

• Class II. Events initiated from downstream of micro-
PMU 2, i.e., at customer location that hosting micro-PMU
2: These events are mostly initiated by load switching
at downstream of micro-PMU 2. Based on the size of
the fluctuations in current magnitude, we can conclude
that these events are due to turning on large loads at
downstream of micro-PMU 2, such as HVAC loads or
energy storages.

• Class III. Events initiated from somewhere between the
two micro-PMUs across the distribution feeder of interest:
These events are mostly observed as temporary fluctu-
ation in voltage magnitude, current magnitude, active
power, and reactive power at feeder-level, seen by micro-
PMU 1. They may also affect the voltage magnitude
at customer-level. These events can be due to a wide
verity of causes, such as load switching, capacitor bank
switching, and protection operation.

A. Data-Driven Feature Selection

Feature selection is a key step towards developing an
automated data-driven mechanism to classify the events. In
Machine Learning, features are defined as quantifiable proper-
ties of events. In this paper, we propose features in two broad
categories as for the purpose of event classification:

• Single-Stream Features: These features are quantifiable
properties of single data stream, such as features that
are derived from voltage magnitude, current magnitude,
active power, and reactive power. In this paper, standard
deviation and absolute difference are chosen as single-
stream features. Thus, the total number of single-stream
features is 16.

• Multi-Stream Features: These features are derived from
any two combination of synchronized data sequences,
whether from the same micro-PMU or two micro-PMUs.
Here, we consider correlation between any two of the
eight data streams as multi-stream features. Thus, the total
number of multi-stream features is 28.

B. Multi-SVM Classifier

In this section, we train a multi-class support vector machine
(multi-SVM) classifier to separate the events according to
the labels that are introduced in Section III. The SVM was
originally developed for binary classification [14]. Consider
m events that are detected by using methods in Section II
as training samples. For each training sample i = 1, . . . ,m,
let Xi denote a 44-dimensional vector of extracted features.
Also, let yi ∈ {−1, 1} denote the assigned label for sample
i. If the training samples are linearly separable, there exists a
hyperplane WTX + b = 0 in the 44 × 44 feature space that
separates two classes, where W is a 44×1 weight vector, and
b is a scalar. When the training samples are linearly separable,
there are an infinite number of hyperplanes that separates
classes. The SVM yields to find the optimal hyperplane that
has the maximum distance between the hyperplane and the set
of training samples. In the case that training samples are not
linearly separable, there is no such hyperplane that separates
all m events. This issue can be resolved by adding some
slack variables to the optimization problem. The binary-SVM
classifier is formulated as:

minimize
W,b,ξ

1

2
‖W‖22 + λ

n∑
i=1

ξi (7a)

subject to yi
(
WTXi + b

)
≥ 1− ξi, i = 1, . . . ,m (7b)

ξi ≥ 0, i = 1, . . . ,m, (7c)



5

TABLE I
NUMBER OF DETECTED EVENTS IN CASE I AND CASE II.

n 120 240 360 480 600 720 840 960 1080 1200
Case I 302 200 197 153 125 125 106 101 95 88
Case II 481 303 271 223 206 190 172 151 150 123

TABLE II
NUMBER OF DETECTED EVENTS IN CASE III AND CASE IV.

n 120 240 360 480 600 720 840 960 1080 1200
Case III 302 +64 +29 +13 +4 +3 0 0 +1 0
Case IV 481 +50 +19 +5 +5 +4 0 0 0 0

where ξi denotes slack variable corresponding to training
sample i. Also, λ denotes the tuning parameter used to balance
the importance of the margin and the training error. If a
training event falls on the correct side but within the margin,
then 0 < ξi < 1, while if a point falls on the wrong side of
the hyperplane ξi ≥ 1, otherwise ξi = 0.

We utilize binary-SVM classifier to solve multi-class clas-
sification problem by decomposing the problem into several
binary classification problems. Several methods have been
developed in literature to decompose multi-class classifica-
tion problem, such as one-against-one (OvO), one-against-all
(OvA), and directed acyclic graph SVM (DAGSVM) [14]. In
this paper, we use OvA decomposition method. Each binary
SVM problem results in a separating hyperplane to separate
one of the c classes from the rest of the c − 1 classes.
Accordingly, solving c binary classifications, using (7), results
in c separating hyperplanes. The decision on class prediction
for testing sample i is made as:

yi = arg max
l=1,...,c

(
WT
l Xi + bl

)
. (8)

Thus, in (8), the testing sample i is assigned to class l, which
has the largest value of the decision function.

IV. CASE STUDIES

In this section, the proposed event detection methods and
event classification method are applied to one week real-world
data from two micro-PMUs shown in Fig. 1.

A. Event Detection in micro-PMU Data Sequence

This section examines the effectiveness of the proposed
event-detection methods introduced in Section II, using one
day data of current magnitude from micro-PMU 1. Also, we
study the effect of the moving window and dynamic window
sizes. To such aim, Method I is applied to the following cases:

• Case I. Static window size without moving window;
• Case II. Static window size with moving window;
• Case III. Dynamic window size without moving window;
• Case IV. Dynamic window size with moving window.

In order to compare the above case-studies, the detected events
in each case study are compared with those that are detected
in Case IV, which includes 564 events. Table I reports the
number of the detected events in Case I and Case II with
considering 10 static window sizes. For instance, considering
n = 120 micro-PMU data points, the moving window results
in detecting 179 more events. From this table, we can conclude
that most of the events are detected in smaller windows.

TABLE III
EVENT DETECTION PERFORMANCE INDEXES FOR METHODS I AND II.

Method TP FP FN PPV TPR F1 Score
Method I 541 23 8 0.96 0.985 0.97
Method II 546 6 3 0.99 0.99 0.99

Also, Table II shows the number of additional events that
are detected in each window size in Cases III and IV. From
this table we can conclude that considering moving window
results in detecting more events in each dynamic windows.

Next, we compare the effectiveness of the Method I with
Method II, considering dynamic window sizes and moving
windows. We define positive predictive value (PPV), true
positive rate (TPR), and detection accuracy (F1 score) as [15]:

PPV =
TP

TP + FP
, (9)

TPR =
TP

TP + FN
, (10)

F1 = 2 · PPV · TPR
PPV + TPR

, (11)

where TP denotes number of true positive data points which
is the number of events that are correctly identified as events,
FP denotes number of false positive data points which is the
number of normal data points that are identified as events, and
FN denotes number of false negative data points which is the
number of events that are identified as normal data points. The
performance indexes for both detection methods are reported
in Table III. The obtained results shows Method II outperforms
the Method I.

B. Classifier Design

The proposed event detection method based on residual
test is applied to one week micro-PMUs data. In total, 5881
events has been detected in one week data. Among the events
detected, 961, 1,208, and 3,711 events are labeled in Class I,
Class II, and Class III, respectively. We partitioned the events
to training dataset and test dataset, where the training data set
includes 670 events, among them 143, 223, and 304 events
are labeled in Class I, Class II, and Class III, respectively.

A multi-SVM classifier is designed to separate the detected
events. According to the (7), the three binary classifier results
in three separating hyperplanes in 44 × 44 feature space. In
order to visually show the separating hyperplanes in feature
space, two dominant features among 44 features are selected
to train and test classifier. Thus, the separating hyperplanes
in 2 × 2 feature space are separating lines. Fig. 5(a) shows
the training data points in 2 × 2 feature space as well as
three separating lines obtained from three binary SVMs. Each
separating line is somehow designed to separate events of one
class from the rest of the events. The confusion matrix corre-
sponding to training dataset is shown in Fig. 6(a). Here, the
accuracy of training is 90.6%. Next, the separating hyperplanes
are applied to the test dataset, and decision on class prediction
is made using (8). Fig. 5(b) shows the test dataset in 2 × 2
feature space and separating lines. The overall classifier testing
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Fig. 6. Confusion matrices obtained by classifier: (a) training data considering
two dominant features; (b) test data considering two dominant features; (c)
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accuracy is 74.96%. Fig. 6(b) shows the confusion matrix for
test dataset. As it can be seen, the classifier fails to correctly
separate several data points due to not using 44 features.

Next, we design a classifier by considering all 44 features
that are introduced in Section III-A. Fig. 6(c) and (d) show the
confusion matrices for training and testing datasets, respecti-
vely. As it can be seen from these matrices, the accuracy of
training dataset is 100%. Also, the classifier accuracy for test
data set increases to 97.89% by considering all 44 features.
The accuracy of classification for test dataset verifies the
performance of the proposed classifier.

C. Analysis of Oscillation Events

As discussed in Section III, the events in Class III can be due
to load switching, capacitor bank switching, protection devices
operation. Among all events in this class, there exists several
oscillation events as shown in Fig. 7. There is currently a
limited understanding of the oscillation events within distribu-
tion systems. Thus, in this section, we scrutinize these events
to characterize the oscillations on the under-study distribution
feeder. We have applied Fourier analysis and Prony analysis to
find frequency and damping components of oscillation events.
Figs. 8(a) and (b) show frequency and damping components of
oscillation events, respectively. As it can be seen, the average

Fig. 7. Oscillation event corresponds to the measurements from micro-PMU
1: (a) and (b) current; (c) and (d) active power.
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Fig. 8. (a) Frequency component of oscillation event; (b) damping component
of oscillation event.

oscillation frequency is 5.2 Hz, while the average damping
ratio is 2.97%.

Next, we apply event source location identification (ESLI)
method in [3], [16] to identify the location of the detected
oscillation events. Here, the granularity of location identifi-
cation is necessarily limited to 8 zones, as marked on Fig.
1, due to the limited number of micro-PMU installations;
see [3], [16] for more details. For each individual oscillation
event, we calculate the so-called zonal voltage discrepancy
∆Vz for each zone z = 1, . . . , 8 [3], [16]. For each event,
the location of event is identified as the zone with minimum
zonal voltage discrepancy. Interestingly, we identified that all
oscillation events are initiated from Z7.

V. CONCLUSIONS

This paper develops new methods to resolve Big-Data
challenges in transforming unprocessed data of distribution-
level PMUs to actionable information. Two novel model-free
event detection methods have been proposed to pick out events
from an ongoing stream of micro-PMU data. The first event
detection method is built on testing absolute values around
median by considering moving window and dynamic window
size. The second event detection method is based on examining
the non-linear relationship between nodal voltage and nodal
current injection. The effectiveness of the proposed event
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detection methods are compared on real-world data from two
micro-PMUs on a distribution feeder in Riverside, CA. The
obtained results show that the accuracy of event detection
by testing residues of non-linear estimation method is higher
than the method by examining absolute values around median.
Also, a multi-SVM classifier is trained to classify events based
on their root-cause locations. The effectiveness of the designed
classifier is examined on one week real-world data from
two micro-PMUs on a distribution feeder in Riverside, CA.
Finally, we particularly look into oscillation events that occurs
somewhere in distribution feeder. The results in this paper
could be of value to utilities to resolve Big-Data challenges.
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