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Abstract— We consider the problem of decentralized con-
sensus optimization, where the sum of n convex functions are
minimized over n distributed agents that form a connected net-
work. In particular, we consider the case that the communicated
local decision variables among nodes are quantized in order to
alleviate the communication bottleneck in distributed optimiza-
tion. We propose the Quantized Decentralized Gradient Descent
(QDGD) algorithm, in which nodes update their local decision
variables by combining the quantized information received from
their neighbors with their local information. We prove that un-
der standard strong convexity and smoothness assumptions for
local cost functions, QDGD achieves a vanishing mean solution
error. To the best of our knowledge, this is the first algorithm
that achieves vanishing consensus error in the presence of
quantization noise. Moreover, we provide simulation results
that show tight agreement between our derived theoretical
convergence rate and the experimental results.

I. INTRODUCTION

Distributed optimization of a sum of convex functions
has a variety of applications in different areas including de-
centralized control systems [1], wireless systems [2], sensor
networks [3], networked multiagent systems [4], multirobot
networks [5], and large scale machine learning [6]. In such
problems, one aims to solve a consensus optimization prob-
lem to minimize f(x) =

∑n
i=1 fi(x) cooperatively over n

nodes or agents that form a connected network. The function
fi(·) represents the local cost function of node i that is only
known by this node.

Distributed optimization has been largely studied in the
literature starting from seminal works in the 80s [7], [8].
Since then, various algorithms have been proposed to ad-
dress decentralized consensus optimization in multiagent
systems. The most commonly used algorithms are decen-
tralized gradient descent or gradient projection method [9]–
[12], distributed alternating direction method of multipliers
(ADMM) [13]–[15], decentralized dual averaging [16], [17],
and distributed Newton optimization method [18], [19]. Fur-
thermore, the decentralized consensus optimization problem
has been considered in online or dynamic settings, where
the dynamic cost function becomes an online regret function
[20], [21].
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A major bottleneck in achieving fast convergence in de-
centralized consensus optimization is limited communication
bandwidth among nodes. As the dimension of input data
increases (which is the current trend in large-scale distributed
machine learning), a considerable amount of information
must be exchanged among nodes, over many iterations of
the consensus algorithm. This causes a significant commu-
nication bottleneck that can substantially slow down the
convergence time of the algorithm [22], [23].

Quantized communication for the agents is brought into
the picture for bounded and stable control systems [24].
Furthermore, consensus distributed averaging algorithms are
studied under discretized message passing [25]. Motivated
by the energy and bandwidth-constrained wireless sensor
networks, the work in [26] proposes distributed optimization
algorithms under quantized variables and guarantees conver-
gence within a non-vanishing error. Deterministic quantiza-
tion has been considered in distributed averaging algorithms
[27] where the iterations converge to a neighborhood of
the average of initials. However, randomized quantization
schemes are shown to achieve the average of initials, in
expectation [28]. The work in [29] also considers a con-
sensus distributed optimization problem over a cooperative
network of agents restricted to quantized communication.
The proposed algorithm guarantees convergence to the op-
tima within an error which depends on the network size
and the number of quantization levels. Aligned with the
communication bottleneck described earlier, [30] provides a
quantized distributed load balancing scheme that converges
to a set of desired states while the nodes are constrained to
remain under maximum load capacities.

More recently, 1–Bit SGD [22] was introduced in which
at each time step, the agents sequentially quantize their local
gradient vectors by entry-wise signs while contributing the
quantization error induced in previous iteration. Moreover,
in [31], the authors propose the Quantized-SGD (QSGD), a
class of compression scheme algorithms that is based on a
stochastic and unbiased quantizer of the vector to be trans-
mitted. QSGD provably provides convergence guarantees, as
well a good practical performance. Recently, a different line
of work has proposed the use of coding theoretic techniques
to alleviate the communication bottleneck in distributed
computation [32]–[35].

In this paper, our goal is to analyze the quantized de-
centralized consensus optimization problem, where node i
transmits a quantized version of its local decision vari-
able Q(xi) to the neighboring nodes instead of the exact
decision variable xi. Motivated by the stochastic quan-
tizer proposed in [31], we consider unbiased and variance
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bounded random quantizers Q(·), i.e. E
[
Q(x)|x

]
= x and

E
[
‖Q(x)− x‖2|x

]
≤ σ2 for some fixed constant σ2.

Our main contribution is to propose a Quantized Decen-
tralized Gradient Descent (QDGD) method, which involves
a novel way of updating the local decision variables by
combining the quantized message received from the neigh-
bors and the local information such that proper averaging is
performed over the local decision variable and the neighbors’
quantized vectors. We prove that under standard strong
convexity and smoothness assumptions, for any unbiased and
variance bounded quantizer, QDGD achieves a vanishing
mean solution error: for all i = 1, . . . , n we obtain that
E
[
‖xi,T − x∗‖2

]
≤ O

(
1

T 1/4

)
for sufficiently large T ,

where xi,T is the local decision variable of node i at
iteration T and x∗ is the optimal solution. To the best of
our knowledge, this is the first decentralized gradient-based
algorithm that achieves vanishing consensus error in the
presence of non-vanishing quantization noise. We further
provide simulation results that corroborate our theoretical
results.

Notation. In this paper, we denote by [n] the set {1, · · · , n}
for any natural number n ∈ N. The gradient of a function
f(x) is denoted by ∇f(x). For non-negative functions g and
h of t, we denote g(t) = O(h(t)) if there exist t0 ∈ N and
constant c > 0 such that g(t) ≤ ch(t) for all t ≥ t0. we use
dae to indicate the least integer greater than or equal to a.

Paper Organization. The rest of the paper is organized as
follows. In Section II, we precisely formulate the quantized
decentralized consensus optimization problem. We provide
the description of the Quantized Decentralized Gradient
Descent algorithm in Section III. The main theorem of
the paper is stated and proved in Section IV. We provide
numerical studies in Section V. Finally, we conclude the
paper and discuss future directions in Section VI.

II. PROBLEM FORMULATION

In this section we formally define the consensus optimiza-
tion problem that we aim to solve. Consider a set of n nodes
that communicate over a connected and undirected graph
G = (V, E) where V = {1, · · · , n} and E ⊆ V × V denote
the set of nodes and edges, respectively. We assume that
nodes are only allowed to exchange information with their
neighbors and use the notation Ni for the set of node i’s
neighbors. In our setting, we assume that each node i has
access to a local convex function fi : Rp → R, and nodes in
the network cooperate to minimize the aggregate objective
function f : Rp → R taking values f(x) =

∑n
i=1 fi(x). In

other words, nodes aim to solve the optimization problem

min
x∈Rp

f(x) = min
x∈Rp

n∑
i=1

fi(x). (1)

We assume the local objective functions fi are strongly
convex and smooth, and, therefore, the aggregate function f
is also strongly convex and smooth. In the rest of the paper,
we use x∗ to denote the unique minimizer of Problem (1).

In decentralized settings, nodes have access to a single
summand of the global objective function f and to reach the
optimal solution x∗ communication with neighboring nodes
is inevitable. To be more precise, nodes need to minimize
their local objective functions, while they ensure that their
local decision variables are equal to their neighbors’. This
interpretation leads to an equivalent formulation of Prob-
lem (1). If we define xi as the decision variable of node i,
the alternative formulation of Problem (1) can be written as

min
x1,...,xn∈Rp

n∑
i=1

fi(xi)

s.t. xi = xj , for all i, j ∈ Ni. (2)

Since we assume that the underlying network is a connected
graph, the constraint in (2) implies that any feasible solution
should satisfy x1 = · · · = xn. Under this condition the
objective function values in (1) and (2) are equivalent. Hence,
it follows that the optimal solutions of Problem (2) are equal
to the optimal solution of Problem (1), i.e., if we denote
{x∗i }ni=1 as the optimal solutions of Problem (2) it holds
that x∗1 = · · · = x∗n = x∗. Therefore, we proceed to solve
Problem (2) which is naturally formulated for decentralized
optimization in lieu of Problem (1).

The problem formulation in (2) suggests that each node i
should minimize its local objective function fi while keeping
its decision variable xi close to the decision variable xj of its
neighbors j ∈ Ni. This goal can be achieved by exchanging
local variables xi among neighboring nodes to enforce
consensus on the decision variables. Indeed, exchange of
updated local vectors between the distributed nodes induces
a potentially heavy communication load on the shared bus.
To address this issue, we assume that each node provides
a randomly quantized variant of its local updated variable
to the neighboring nodes. That is, if we denote by xi the
decision variable of node i, then the corresponding quantized
variant zi = Q(xi) is communicated to the neighboring
nodes, Ni. Exchanging quantized vectors zi instead of the
true vectors xi indeed reduces the communication burden at
the cost of injecting noise to the information received by the
nodes in the network. The main challenge in this setting is to
ensure that nodes can still converge to the optimal solution
of Problem (2), while they only have access to a quantized
variant of their neighbors’ true decision variables.

III. QDGD ALGORITHM

In this section, we propose a quantized gradient based
method to solve the decentralized optimization problem
in (2) and consequently the original problem in (1) in a
fully decentralized fashion. To do so, consider xi,t as the
decision variable of node i at step t and zi,t = Q(xi,t)
as the quantized version of the vector xi,t. In the proposed
Quantized Decentralized Gradient Descent (QDGD) method,
nodes update their local decision variables by combining the
quantized information received from their neighbors with
their local information. To formally state the update of
QDGD, we first define wij as the weight that node i assigns
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Algorithm 1 QDGD at node i
Require: Weights {wij}nj=1, total iterations T

1: Set xi,0 = 0
2: for t = 0, · · · , T − 1 do
3: Send zi,t = Q(xi,t) to j ∈ Ni and receive zj,t
4: Compute xi,t+1 according to the update in (3)
5: end for
6: return xi,T

to node j. If nodes i and j are not neighbors then wij = 0,
and if they are neighbors the weight wij ≥ 0 is nonnegative.
At each time step t, each node i sends its quantized zi,t
variant of its local vector xi,t to its neighbors j ∈ Ni and
receives their corresponding vectors zj,t. Then, using the
received information it updates its local decision variable
according to the update

xi,t+1 = (1− ε+ εwii)xi,t + ε
∑
j∈Ni

wijzj,t − αε∇fi(xi,t),

(3)
where ε and α are positive step-sizes. The update of QDGD
in (3) shows that the updated decision variable xi,t+1 is eval-
uated by proper averaging over the local decision variable
xi,t and neighbors quantized vectors zj,t, and descending
through the negative local gradient ∇fi(xi,t) with a proper
stepsize. Note that quantized decision variables of the neigh-
boring nodes contribute to the descent direction proportion-
ally to step-size ε, unlike the noiseless local gradient which
is scaled by αε. The steps of the proposed QDGD method
are summarized in Algorithm 1.

Remark 1. The proposed QDGD algorithm can be interpreted
as a variant of the decentralized (sub)gradient descent (DGD)
method [9], [10] for quantized decentralized optimization
(see Section IV). Note that the vanilla DGD method con-
verges to a neighborhood of the optimal solution in the
presence of quantization noise where the radius of conver-
gence depends on the variance of quantization error [9],
[10], [26], [29]. QDGD improves the inexact convergence of
DGD by modifying the contribution of quantized information
received from neighboring noise as described in update (3).
In particular, as we show in Theorem 1, the sequence
of iterates generated by QDGD converges to the optimal
solution of Problem (1) in expectation.

Moreover, the proposed QDGD algorithm does not restrict
the quantizer, except for few customary conditions. However,
design of efficient quantizers has been taken into consider-
ation. For instance, consider a low-precision representation
specified by γ ∈ R and b ∈ N. The range representable by
scale factor γ and b bits is {−γ · 2b−1, · · · ,−γ, 0, γ, · · · , γ ·
(2b − 1)}. For any kγ ≤ x < (k + 1)γ in the representable
range, the low-precision quantizer outputs

Q(γ,b)(x) =

{
kγ w.p. 1− x−kγ

γ ,

(k + 1)γ w.p. x−kγγ .
(4)

For any x in the range, the quantizer is unbiased

and variance bounded, i.e. E
[
Q(γ,b)(x)

]
= x and

E
[∥∥∥Q(γ,b)(x)− x

∥∥∥2] ≤ γ2

4 .

IV. CONVERGENCE ANALYSIS

In this section, we prove that for sufficiently large number
of iterations, the sequence of local iterates generated by
QDGD converges to an arbitrarily precise approximation of
the optimal solution of Problem (1). The following assump-
tions hold through out the analysis of the algorithm.

Assumption 1. Local objective functions fi are differen-
tiable and smooth with parameter L, i.e.,∥∥∇fi(x)−∇fi(y)∥∥ ≤ L‖x− y‖ , (5)

for any x,y ∈ Rp.

Assumption 2. Local objective functions fi are strongly
convex with parameter µ, i.e.,

〈∇fi(x)−∇fi(y),x− y〉 ≥ µ‖x− y‖2 , (6)

for any x,y ∈ Rp.

Assumption 3. The random quantizer Q(·) is unbiased and
has a bounded variance, i.e.,

E
[
Q(x)|x

]
= x, and E

[∥∥Q(x)− x
∥∥2 |x] ≤ σ2, (7)

for any x ∈ Rp; and quantizations are carried out indepen-
dently on distributed nodes.

Assumption 4. The weight matrix W ∈ Rn×n with entries
wij satisfies the following conditions

W =W>, W1 = 1, null(I −W ) = span(1). (8)

The conditions in Assumptions 1 and 2 imply that the
global objective function f is strongly convex with parameter
µ and its gradients are Lipschitz continuous with constant
L. Assumption 3 poses two customary conditions on the
quantizer, that are unbiasedness and variance boundedness.
Assumption 4 implies that weight matrix W is symmetric
and doubly stochastic. The largest eigenvalue of W is
λ1(W ) = 1 and all the eigenvalues belong to (−1, 1],
i.e. the ordered sequence of eigenvalues of W are 1 =
λ1(W ) ≥ λ2(W ) ≥ · · · ≥ λn(W ) > −1. We denote by
1 − β the spectral gap associated to the stochastic matrix
W , where β = max{|λ2(W )|, |λn(W )|} is the second
largest magnitude of the eigenvalues of matrix W . It is
also customary to assume rank(I −W ) = n − 1 such that
null(I −W ) = span(1).

In the following theorem we show that the local iterations
generated by QDGD converge to the global optima, as close
as desired.

Theorem 1. Consider the distributed consensus optimization
Problem (1) and suppose Assumptions 1– 4 hold. Then,
for each node i, the expected deviation of the output of

5840



Algorithm 1 from the solution to Problem (1) is upper
bounded by

E
[∥∥xi,T − x∗

∥∥2] ≤ O( 1

T 1/4

)
, (9)

for ε = c1
T 1/2 , α = c2

T 1/4 and T ≥ T0, where c1, c2 and T0
are positive constants independent of T .

Remark 2. Theorem 1 demonstrates that the proposed QDGD
provides an approximation solution with vanishing deviation
from the optimal solution, despite the fact that the quantiza-
tion noise does not vanish by iteration.

To analyze the proposed method, we start by rewriting the
update rule (3) as follows

xi,t+1 = xi,t−εt
(
(1−wii)xi,t−

∑
j 6=i

wijzj,t+α∇fi(xi,t)
)
.

(10)
The next step is to write the update (10) in a matrix form.
To do so, we define the function F : Rnp → R as F (x) =∑n
i=1 fi(xi) where xi ∈ Rp and x = [x1; · · · ;xn] ∈ Rnp.

It is easy to verify that the gradient of the function F is
the concatenation of local gradients evaluated at the local
variable, that is ∇F (xt) = [∇f1(x1,t); · · · ;∇fn(xn,t)]. We
also define the matrix W = W ⊗ I ∈ Rnp×np as the
Kronecker product of the weight matrix W ∈ Rn×n and the
identity matrix I ∈ Rp×p. Similarly, define WD =WD⊗I ∈
Rnp×np, where WD = [wii] ∈ Rn×n denotes the diagonal
matrix of the entries on the main diagonal of W . For the
sake of consistency, we denote by the boldface I the identity
matrix of size np. According to above definitions, we can
write the concatenated version of (10) as follows,

xt+1 = xt−ε
((

WD−W
)
zt+

(
I−WD

)
xt+α∇F (xt)

)
.

(11)
As we discussed in Section II, the distributed consensus

optimization Problem (1) can be equivalently written as
Problem (2). The constraint in the latter restricts the feasible
set to the consensus vectors, that is {x = [x1; · · · ;xn] :
x1 = · · · = xn}. According to the discussion on rank of
the weight matrix W , the null space of the matrix I −W is
null(I −W ) = span(1). Hence, the null space of I−W is
the set of all consensus vectors, i.e. x ∈ Rnp is feasible for
problem (2) if and only if (I −W)x = 0, or equivalently
(I −W)1/2x = 0. Therefore, the alternative Problem (2)
can be compactly represented as the following linearly-
constrained problem,

min
x∈Rnp

F (x) =

n∑
i=1

fi(xi)

subject to (I−W)1/2x = 0.

(12)

We denote by x̃∗ = [x∗; . . . ;x∗] the unique solution to (12).
Now, for given penalty parameter α > 0, one can define

the quadratic penalty function corresponding to the linearly
constraint problem (12) as follows,

hα(x) =
1

2
x>
(
I−W

)
x+ αF (x). (13)

Since I −W is a positive semi-definite matrix and F is
L-smooth and µ-strongly convex, therefore the function hα
is Lα-smooth and µα-strongly convex on Rnp having Lα =
1−λn(W )+αL and µα = αµ. We denote by x∗α the unique
minimizer of hα(x), i.e.

x∗α = argmin
x∈Rnp

hα(x) = argmin
x∈Rnp

1

2
x>
(
I−W

)
x+ αF (x).

(14)
In the following, we link the solution of problem (14)

to the local variable iterations provided by Algorithm 1.
Specifically, for sufficiently large number of iterations T , we
demonstrate that for proper choice of step-sizes, the expected
squared deviation of xT from x∗α vanishes sub-linearly.

Lemma 1. Consider the optimization Problem (14) and sup-
pose Assumptions 1– 4 hold. Then, the expected deviation
of the output of QDGD from the solution to Problem (14)
is upper bounded by

E
[
‖xT − x∗α‖

2
]
≤ O

(
c1nσ

2‖W −WD‖2F
µc2

1

T 1/4

)
, (15)

for ε = c1
T 1/2 , α = c2

T 1/4 and T ≥ T1, where c1 and
c2 are positive constants independent of T , and T1 :=

max

{⌈(
c1c2µ

)4/3⌉
,

⌈(
c1(1+c2L)

2

c2µ

)4⌉}
.

Lemma 1 guarantees convergence of the proposed itera-
tions (3) to the solution of the later-defined Problem (14).
Loosely speaking, Lemma 1 ensures that xT is close to x∗α
for large T . So, in order to capture the deviation of xT from
the global optima x̃∗, it suffices to show that x∗α is close to
x̃∗, as well. The following lemma guarantees such argument.

Lemma 2. Consider the distributed consensus optimization
Problem (1) and the problem defined in (14). If Assumptions
1, 2 and 4 hold, then the deviation of the two solutions is
bounded as

‖x∗α − x̃∗‖ ≤ O
(

c2
1− β

· 1

T 1/4

)
, (16)

for α = c2
T 1/4 and T ≥ T2, where c2 is

a positive constant independent of T and T2 :=

max

{⌈(
c2L

1+λn(W )

)4⌉
,
⌈
c42(µ+ L)4

⌉}
.

Proofs of Lemmas 1 and 2 are skipped to the long version
of the paper [36]. Having set the main lemmas, now it is
straightforward to prove Theorem 1.

Proof of Theorem 1. For the specified step-sizes ε and α and
large enough iterations T ≥ T0 := max{T1, T2}, Lemmas 1

5841



and 2 are applicable and we have

E
[
‖xT − x̃∗‖2

]
= E

[
‖xT − x∗α + x∗α − x̃∗‖2

]
≤ 2E

[
‖xT − x∗α‖

2
]
+ 2‖x∗α − x̃∗‖2

≤ O
(

1

T 1/4

)
+O

(
1

T 1/2

)
= O

(
1

T 1/4

)
. (17)

Since E
[∥∥xi,T − x∗

∥∥2] ≤ E
[
‖xT − x̃∗‖2

]
for any i =

1, . . . , n, the inequality in (17) follows the claim of The-
orem 1.

V. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the
proposed QDGD Algorithm on minimizing a distributed
quadratic objective. We pictorially demonstrate the effect
of quantization noise and graph topology on the relative
expected error rate.

Consider the quadratic optimization problem

min
x∈Rp

f(x) =

n∑
i=1

1

2
x>Aix+ b>i x, (18)

where fi(x) = 1
2x
>Aix+ b>i x denotes the local objective

function of node i ∈ [n]. The unique solution to (18) is there-
fore x∗ = −

(∑n
i=1 Ai

)−1 (∑n
i=1 bi

)
. We pick diagonal

matrices Ai such that p/2 of the diagonal entries of each Ai

are drawn from the set {1, 2, 22} and the other p/2 diagonal
entries are drawn from the set {1, 2−1, 2−2}, all uniformly
at random. Entries of vectors bi are randomly picked from
the interval (0, 1). In our settup, the graph of agents is a
connected Erdös-Rényi with edge probability pc. We set the
edge weight matrix to be W = I − 2

3λmax(L)
L where L is

the Laplacian with λmax(L) as its largest eigenvalue. In our
simulations, we let an additive noise model the quantization
error, i.e. Q(x) = x+ η where η ∼ N (0, σ

2

p Ip).
We first consider a connected Erdös-Rényi graph of n =

50 nodes and connectivity probability of pc = 0.35 and
dimension p = 20. Fig. 1 shows the convergence rate
corresponding to three values of quantization noise σ2 ∈
{2, 20, 200}, compared to the theoretical upper bound de-
rived in Theorem 1 in the logarithmic scale. As expected,
Fig. 1 shows that the error rate linearly scales with the
quantization noise; however, it does not saturate around a
non-vanishing residual, regardless the variance. Moreover,
Fig. 1 demonstrates that the convergence rate closely follows
the upper bound derived in Theorem 1. For instance, for
the plot corresponding to σ2 = 20, the relative errors
are evaluated as eT1/e0 = 0.0121 and eT2/e0 = 0.0082
for T1 = 3200 and T2 = 12800, respectively. Therefore,
eT2

/eT1
≈ 0.68 which is upper bounded by (T1

T2
)1/4 ≈ 0.7.

To observe the effect of graph topology, quantization noise
variance is fixed to σ2 = 2 and we varied the connectivity
ratio by picking three different values, i.e. pc ∈ {0.1, 0.5, 1}
where pc = 1 corresponds to the complete graph case. As

T
50 200 800 3200 12800

E
[|
|x

T
−
x̃
∗
||
2
]/
||
x
0
−
x̃
∗
||
2

10−3

10−2

10−1

100

O
(

1
T 1/4

)

σ
2 = 200

σ
2 = 20

σ
2 = 2

Fig. 1. Relative optimal squared error for three vales of quantization noise
variance: σ2 ∈ {2, 20, 200}, compared with the order of upper bound.

T
50 200 800 3200 12800

E
[|
|x

T
−
x̃
∗
||
2
]/
||
x
0
−
x̃
∗
||
2

10−3

10−2

10−1

100

O
(

1
T 1/4

)

pc = 0.1
pc = 0.5
complete graph

Fig. 2. Relative optimal squared error for three vales of graph connectivity
ratio: pc ∈ {0.1, 0.5, 1}, compared with the order of upper bound.

Fig. 2 depicts, for the same number of iterations, deviation
from the optimal solution tends to increase as the graph
is gets sparse. In other words, even noisy information
of the neighbor nodes improves the gradient estimate for
local nodes. It also highlights the fact that regardless of
the sparsity of the graph, the proposed QDGD algorithm
guarantees the consensus to the optimal solution for each
local node, as long as the graph is connected.

VI. CONCLUSION

We proposed the QDGD algorithm to tackle the problem
of quantized decentralized consensus optimization. The algo-
rithm updates the local decision variables by combining the
quantized messages received from the neighbors and the local
information such that proper averaging is performed over the
local decision variable and the neighbors’ quantized vectors.
We proved that the QGDG algorithm achieves a vanishing
consensus error in mean-squared sense, and verified our
theoretical results with numerical studies.

An interesting future direction is to establish a funda-
mental trade-off between the convergence rate of quantized
consensus algorithms and the communication. More pre-
cisely, given a target convergence rate, what is the minimum
number of bits that one should communicate in decentralized
consensus? Another interesting line of research is to develop

5842



novel source coding (quantization) schemes that have low
computation complexity and are information theoretically
near-optimal in the sense that they have small communication
load and fast convergence rate.
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