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Abstract—The analysis of abnormalities in smart meter data
has applications in load forecasting, cyber security, fault detec-
tion, electricity theft detection, demand response, etc. Abnormal-
ity is broadly defined in this paper as any unusual electricity
consumption instance or trend that falls outside of the normal
usage patterns for each load, whether in terms of magnitude,
time of usage, etc. Unusual electricity consumption can have
different signatures and different duration of time. This paper
aims to evaluate the performance of four unsupervised machine
learning methods for abnormality detection on real-world smart
meter data, namely prediction-based regression, prediction-based
neural network, clustered-based, and projection-based methods.
Different types of features, such as load-based, contextual, and
environmental, are investigated to construct the data-driven mod-
els. It is shown that different abnormality detection methods have
different ability for detecting different types of abnormalities;
and their performance depends on the set of features used for
training the method. Accordingly, different types of features are
scrutinized for each abnormality detection method.

Keywords: Data-driven analysis, abnormality detection, smart
meter data, feature selection, unsupervised learning.

I. INTRODUCTION

The deployment of smart meters has provided system
operators with an unprecedented level of visibility over the
distribution networks and customer loads, with a multitude of
applications, c.f. [1]. However, it is now a challenge to handle
the tremendous growth in the volume and velocity of data that
is generated by the smart meters in the load sector. Therefore,
it is necessary to find ways to the extract the most useful parts
of the data and transform them to actionable information.

This paper aims to conduct a data-driven study of smart
meters using real-world data streams from Pecan Street project
in Austin, TX [2] to identify load abnormality. Abnormality
in the context of this paper is broadly defined as any unusual
electricity consumption instance or trend that falls outside of
the normal power consumption patterns for a load or load
sector, whether in terms of magnitude, time, duration, etc. [3].
The analysis of abnormalities in smart meter data streams is of
great interest to several applications, such as load forecasting
[4], cyber attack detection [5], fault and outage detection [6],
electricity theft detection [7], demand response [4], etc.

Our approach in this paper is based on machine learning.
Accordingly, this study is in its broad sense comparable with
those in [8]–[11]. A deep semi-supervised convolutional neural
network with confidence sampling is proposed in [8]. Also,
a supervised ensemble-based method with sliding window
is proposed in [9]. However, when it comes to abnormality
detection, we must deal with an inherently unsupervised

learning problem because abnormalities do not have a known
paradigm; they are rather determined in comparison with
the history of data. Therefore, the usage of unsupervised
learning methods are more practical than supervised and semi-
supervised methods. In [10], a prediction-based unsupervised
abnormality detection method is proposed that comprises
a dynamic regression model and an adaptive abnormality
threshold. In [11], an unsupervised clustering-based algorithm
on the low-dimensional dissimilarity matrix is used to detect
irregular power consumption. However, these two studies do
not consider the role of feature selection in training their
model. They also only consider specific types of abnormality.

The above open problems are addressed in this paper, where
the focus is on unsupervised machine learning methods. The
main contributions in this paper can be summarized as follows:

1) This paper provides a systematic comparative study of
four different unsupervised machine learning methods to
understand how different methods can best serve to de-
tect different types of abnormalities in real-world smart
meter data. Specifically, we examine load prediction
regression-based, load prediction neural-network-based,
clustered-based, and projection-based methods for ab-
normality detection and compare their performance.

2) Different features are investigated for different methods
to obtain the best combination of features for each
method. An important conclusion is that, when it comes
to historical load features, they are useful in prediction-
based methods for the purpose of finding abnormal load
trends; while they are also useful in cluster-based meth-
ods for the purpose of finding abnormal load instances.
In addition, cluster-based methods can use a proper com-
bination of historical load features, contextual features,
and environmental features to simultaneously identify
both abnormal load trends and abnormal load instances.

3) To speed up detection, all methods are implemented
in online mode, where the models are updated upon
the arrival of new data. To the best of our knowledge,
this is the first study to address the application of
Isolation Forest (IF) and Lightweight On-line Detector
of Anomalies (LODA), as two computationally efficient
online methods, to do abnormality detection in smart
meter data. The models are adjusted to meet the needs
of the data-driven application domain in this paper.

II. METHODOLOGY

In this section, we describe the unsupervised online abnor-
mality detection approach, based on four different methods.
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A. Feature Selection

Broadly speaking, the features of electricity power con-
sumption data can be categorized into three generic groups:
load-based features, contextual features, and environmental
features. It is vital to identify the right choices of features
within each category that are most informative with respect to
the specific problem and the specific data-driven method.

1) Load Based Features: These features account for the
power consumption of residential household in different time
steps. They are obtained from historical power consumption
data with different time lags. The followings are the set of
load based features that we consider in this study:

Lt = {P t, P tY , P tW , P tM},
Lw = {P t−24, P t−23, · · · , P t−1},

(1)

where Lt is the set of historical load data at time t. In this set,
P t is power consumption at time t, P tY is power consumption
yesterday at time t, P tW is power consumption in the last two
weeks at time t, and P tM is the mean of power consumption
at time t. As for Lw, it is the set of previous 24 hours.

2) Contextual Features: These features are not specific to
power consumption, but they do have indirect impact on power
consumption. Time of the day, day of the week, weekends
versus weekdays flag, holidays, and season of the year are
instances of contextual information, as listed below:

C = {T td, Dt
w,W

t
s , H

t, St}. (2)

3) Environmental Features: Electricity consumption in
some appliances such as heating ventilation and air condition-
ing (HVAC) systems depend on some environmental features
such as temperature. Therefore, total power consumption of
household are affected by these features which in this study
considered as set E and comprises of temperature (Tempt)
and humidity (Humt) factors as illustrated below:

E = {Tempt, Humt}. (3)

These three features can be correlated. This may affect the
quality of the learning process. Thus, we must study the effect
of different feature combinations on each detection method, in
order to customize features with respect to each model.

B. Abnormality Detection Techniques

Importantly, the abnormality detection problem does not
have a known paradigm; therefore, it is inherently an unsu-
pervised learning problem. This is more so when it comes to
smart meter data, because we must explore the type of abnor-
malities that may arise in such data streams, along with the
potential applications of detecting such different abnormalities.
It should be added that, for analyzing “unusual” load patterns
of costumers, we do not have specific pre-determined labels.

Online unsupervised learning methods are updated as soon
as they see new data; thus, they can learn new patterns and the
changes in trends, such as due to seasonal changes. Moreover,
these methods can be implemented in the real time in order to
detect abnormalities quickly. In this study, we implement four
unsupervised online abnormality detection methods:

1) Load Prediction with Regression (LPBSVR): This
method works based on the comparison between the predicted
and the actual power consumption. Accordingly, it is required
to be built upon a prediction method. In this method, the
prediction of power consumption is done using Support Vector
Regression (SVR). SVR is a regression model which tries
to minimize errors associated with the support vectors, so
the prediction model is trained based on the outliers [12].
Therefore, this method is suitable for abnormality detection,
where the abnormal patterns are treated as outliers.

Based on the obtained regression model using SVR, the
residual can be calculated as the difference between real
electricity consumption of each data and the predicted data
in each time slots. These residuals are characterized with a
probability distribution function (PDF), which can be used to
detect the outliers data. For example, given that the PDF of
residuals is a normal distribution with mean µ and variance
σ, the data that falls outside of the [µ− 3σ, µ+ 3σ] span can
be considered as outliers, i.e., abnormality data and outliers.

2) Load Prediction with Neural Network (LPBNN): As far
as sole load prediction is concerned, neural network (NN)
is proven to be a powerful data-driven tool, e.g., see [13].
Therefore, they can be used to develop a load prediction-
based abnormality detection method. Other than the method of
prediction, LPBNN is similar to LPBSVR. but the prediction is
now done using a neural network [14]. We examined different
neural network configurations, with 1 to seven hidden layers,
three to thirteen nodes in each hidden layer, and both Relu
and sigmoid as activation functions. The best results are then
used in terms of prediction accuracy, with respect to MSE.

For each new reading from the smart meters, it first passes
to the trained NN model to predict power consumption. Next,
the residual is obtained; and if it is out of the mentioned span,
then it is labeled as abnormal. The model is updated after
making decision for each new data: if the new data is labeled
as normal, then it is used as a new training data to update the
NN model and residual PDF; otherwise, i.e., if the new data
is abnormal; then it is reported and is not used to update the
NN model. This process exactly implement for the regression
based model which in that case SVR model are updated.

3) Clustered Based Method: In this method, the whole set
of available data is clustered into two sets of “abnormal data”
and “normal data”. Some examples of cluster base methods
are K Nearest Neighborhood (KNN) [15] and Local Outlier
Factor (LOF) [16]. However, in this paper, we use the isolated
forest (IF) method [17]. The basic idea of IF is to isolate
instances without calculating any type of distance among
measurements. This helps enhance computational time and
online detection. IF utilizes two main characteristics when
it comes to abnormalities: a) abnormal data is very rare; b)
certain features of abnormal data are very different from those
of normal data. Clustering is done using binary tree clustering.
Because of susceptibility to isolation, anomalies tend to be
isolated closer to the root of the binary tree. There are two
reasons for that: first, instances with obvious feature value are
tend to be divided in the early partitioning process; Second,
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in different parts which contains anomalies, less anomalies
creates fewer partitions which causes shorter paths in the tree.

4) Projection Based Method: Input space is projected to
a subspace by using projection vectors mainly for dimension
reduction. Principle Component Analysis (PCA) and LODA
[3] are two common projection based methods for abnormality
detection. In this study, we use LODA, due to its computa-
tional efficiency for random sparse projection. It is based on
ensemble of some random sparse projection of feature vector.

The projected values of a training data with respect to a
projection vector wi, give us a one-dimensional set which is
used to obtain a histogram for each set. Hence, we have k one-
dimensional histogram from training data. The LODA output
can be defined as negative log-likelihood of the sample data:

f(x) = −1

k

k∑
i=1

log p̂i(xTwi). (4)

A higher value of f(x) indicates a lower probability of
the sample being abnormal. Also, p̂i denotes the respective
probability of projected value of vector wi and input x. For
online abnormality detection of each input data, the projection
value in each wi is calculated and the respective p̂i is found
by it’s histogram. Therefore, the LODA output of input data
can be found based on trained histograms. By comparing this
value with a certain threshold, the input data is labeled as
normal or abnormal data. If the input data is recognized as
abnormal, then it is used to update the histograms.

The number of bins in LODA for each histogram is calcu-
lated through the following optimization problem [3]:

maximize
W,b

b∑
i=1

ni log
bni
N
−
[
b− 1 + (log b)2.5

]
subject to N =

b∑
i=1

ni,

(5)

where N is the total number of samples, ni is the number
of samples in the ith bin, and b is the total number of
bins. This optimization problem is solved for each histogram
individually. As another important parameter in LODA, the
number of sparse projection vectors is calculated as:

σ̂k =
1

N

N∑
i=1

|fk+1(xi)− fk(xi)|. (6)

where k is the number of histograms and the optimum value of
this parameter can be determined by equation as arg min

k

σ̂k

σ̂1
.

III. CASE STUDIES

The test cases in this paper are based on the smart meter data
from Pecan Street project in Austin, TX [2]. The collected data
is for 92 consecutive days for five households with resolution
of 15 minutes. After pre-processing and cleansing, the data is
divided into 70% train data and 30% test data, respectively.

Recall from Section III that abnormality detection is inher-
ently an unsupervised learning process. Therefore, since our
data has no per-determined labels for abnormality, we need to
obtain a benchmark to define unusual electricity consumption.

Captured by window size 3

Captured by window size 13 

Fig. 1. Abnormality benchmark based on statistical model

A. Defining Abnormality in Electricity Consumption

Unusual electricity consumption can have different sig-
natures and different duration of time. In order to capture
abnormalities of different lengths, we use moving windows
of different sizes on recent data and compare the data in
the most recent window with those in the previous windows.
By examining various experimental data in the database, we
figured out that the power consumption data over the last
three-weeks could efficiently show the trend of historical data.
Therefore, by taking the average of each three-weeks period
of data, we can construct a model to capture the trends of
data over time. By conducting such comparison, we obtain
a set of residual data for any window size and then fit a
normal distribution function to the residuals with mean µp and
standard deviation σp. These residuals are sum of the residuals
across all individual time slots within each window.

For any residual that deviates from 3σp, we consider it as
an unusual trend or abnormality data. For the points which
are determined in several moving windows, we consider the
largest consecutive window. Such window can be obtained by
analyzing residual curves related to each window size. After
that, we select the curve with one peak in the detected points.
Essentially, the peak point among all detected abnormalities is
the size of the largest window that detected the abnormality.

Fig. 1 shows two consecutive abnormalities on one day
which are captured by two different window size. This figure
also depicts electricity consumption of the day, mean of the
same day for the last three-weeks, and the residuals for the
two detection window sizes. Note that, the window with size 3
detect the whole span of time slots 44−57 but as the window
with size 13 is a larger detector, and we have one peak (rather
than several peaks in the window with size 3) in the detected
span, we choose the later window as the period of abnormality.

B. Comparing Four Methods

All the proposed methods are applied on the available test
data. In the “base case” all the three categories of features, i.e.,
load related, contextual and environmental, are applied to the
models to detect abnormalities. Fig. 2 shows the performance
of the four methods for part of the test data. The benchmark
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Fig. 2. Comparison of different abnormality detection methods with bench-
mark in the base case when all features are utilized.

abnormalities are marked on the data curves using triangles.
The detected abnormalities time slots for each methods have
been illustrated with different shapes below the curves.

To compare the four methods, we use the Matthews Corre-
lation Coefficient (MCC) which is defined as [18]:

MCC = (TP×TN−FP×FN)√
(TP+TF )(TP+FN)(TN+FP )(TN+FN)

(7)

Here, TP, TN,FP, FN are true positive (correctly identified),
true negative (correctly rejected), false positive (incorrectly
identified) and false negative (incorrectly rejected), respec-
tively. MCC is broadly used as a measure of accuracy in
binary classification, which essentially includes abnormality
detection as a special case. MCC score is between −1 (the
worst performance) and 1 (the best performance).

Based on the above results, IF has the best performance with
MCC equal to 0.81; while MCC for LODA, LPBSVR and
LPBNN is 0.54, 0.49 and 0.47, respectively. In the base case,
all features are used which gives the best prediction result,
i.e. the lowest MSE. However, despite having good prediction
performance, LPBSVR and LPBNN have poor performance in
detecting abnormality. This is due to comparing the consump-
tion with its prediction, not with the previous consumption
trends, which are different at the unusual benchmark points.

On the other hand, IF and LODA consider all features to de-
tect abnormalities rather than conducting prediction. IF detects
many points as abnormalities even more than benchmark. This
may derive the fact that these points are different in certain
feature from the usual trends, such as humidity, temperature,
higher consumption in these time slots or even holiday flag.

C. Feature Selection and Sensitivity Analysis

In this section, we examined the impact of different features
on the performance of each method. The result of the simu-
lation are summarized in Table I. It is worth mentioning that
all methods have been examined with different thresholds and
the best MCC result is reported for each method. Also, the
MSE of the prediction based methods is given in the Table II.

Recall from Section III-B that, while the use of all features
can improve prediction in prediction-based methods, it does

TABLE I
THE METHODS ACCURACY IN FEATURES SELECTION SCENARIOS

Feature scenarios IF LODA LPBSVR LPBNN
Whole features 0.8132 0.5447 0.493 0.4751
Lt 0.79156 0.7313 0.9276 0.7288
Lt + Lw 0.7666 0.7313 0.3206 0.2273
Lt + C 0.7924 0.3467 0.9276 0.7662
Lt + C + Lw 0.8783 0.7976 0.43102 0.5204
Lt + C + E 0.9196 0.43427 0.8852 0.6874

TABLE II
MSE OF PREDICTION BASED METHODS WITH RESPECT TO DIFFERENT

FEATURE COMBINATION

Feature scenarios LPBSVR LPBNN
Whole features 0.2741 0.3016
Lt 0.6516 0.6375
Lt + Lw 0.2723 0.3893
Lt + C 0.7501 0.6770
Lt + C + Lw 1.3376 0.3778
Lt + C + E 0.7839 0.6547

not necessarily improve abnormality detection. This issue is
better understood in Fig. 3, where features Lt, C and Lw are
used. Despite having higher MSE, LPBSVR and LPBNN have
lower MCC. In prediction-based methods, we need a predic-
tion (dashed green curve) close to the previous consumption
trend (red curve) and not necessarily close to the real power
consumption (blue curve). In fact, for prediction-based meth-
ods, those features that simulate the previous consumption
trends serve better for abnormality detection. Fig. 4 shows
the results for the case where only the Lt features are used.
Here, prediction-based methods appropriately simulate the
previous consumption trend (red curve) as its expected value
(dashed green curve) for the actual load. Conversely, for more
accurate predictions, the better descriptive and complementary
features should be used. It is worth mentioning that, NN works
better than SVR in most cases in predicting the electricity
consumption. However, LPBSVR has better performance than
LPBNN in detecting abnormality in most cases, except when
Lt, Lw and C are all utilized. This is because SVR is trained
based on the outliers, which helps in abnormality detection.

Another observation is that the performance of IF is not
sensitive to Lw, i.e., window features. This is due to the
cohesion of these features which are related and close to each
other. As a result, IF cannot divide them suitably in the trained
model (trained trees). In contrast, if we substitute the window
features with the environmental features, the best performance
for IF is happened. This shows that the tree nodes in IF
are sensitive to the environmental features. Understanding the
cause of unusual consumption can be derived by examining
diverse features which is out of the scope of this study. Ana-
lyzing simulation results shown that prediction based method
generally is more accurate for the abnormalities with very
high or very low magnitude. Conversely, other two methods,
specially IF, are more accurate for unusual trends which may
does not have a high peak power consumption.

Since LODA depends on random projection, many repe-
tition must be considered to test its performance. The result
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Fig. 3. Comparison with benchmark based on Lt + C + Lw features
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Fig. 4. Comparison with benchmark based on Lt features

with Lt, C and E as features in different Houses and time slots
shows that LODA tends to detect power consumption which
are really close to zero. In other words, LODA is sensitive to
the very low power consumption periods. However, it has an
acceptable performance compared to other methods when Lt

is used or it is accompanied with Lt features.

IV. CONCLUSIONS

In this study, we examine the performance of four online
unsupervised machine learning abnormality detection methods
to detect abnormalities in smart meter data. The real-world
data traces are used for this purpose. Four key conclusions
are made. First, it is observed that, in general, i.e., when all
available features are considered, clustering-based methods,
such as IF, have a better performance that prediction-based and
projection-based methods. Second, prediction-based methods
gain their best performance when the prediction model simu-
lates the previous consumption trend accurately rather than
following the upcoming real-time electricity consumption.
Third, simulation results show that prediction based methods
generally are more accurate for the abnormalities with very
high or very low magnitude. Forth, projection-based methods,
such as LODA, do not show promising performance for
abnormality detection in smart meter data; however, LODA

can demonstrate a slightly better performance through a better
feature selection when only a certain subset of available
features are utilized. In this regard, when it comes to the
detection of abnormalities in smart meter data, it is better to
customize the features for each method individually, despite
the fact that the common practice in the previous literature is
to consider the same set of features for all methods.
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