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Abstract—Cyber-Physical Systems (CPS) are growing
with added complexity and functionality. Multidisciplinary
interactions with physical systems are the major keys to
CPS. However, sensors, actuators, controllers, and wireless
communications are prone to attacks that compromise the
system. Machine learning models have been utilized in
controllers of automotive to learn, estimate, and provide the
required intelligence in the control process. However, their
estimation is also vulnerable to the attacks from physical or
cyber domains. They have shown unreliable predictions against
unknown biases resulted from the modeling. In this paper, we
propose a novel control design using conditional generative
adversarial networks that will enable a self-secured controller
to capture the normal behavior of the control loop and the
physical system, detect the anomaly, and recover from them.
We experimented our novel control design on a self-secured
BMS by driving a Nissan Leaf S on standard driving cycles
while under various attacks. The performance of the design
has been compared to the state-of-the-art; the self-secured BMS
could detect the attacks with 83% accuracy and the recovery
estimation error of 21% on average, which have improved by
28% and 8%, respectively.

Index Terms—CPS, Security, Electric Vehicle, Battery,
Machine Learning, Battery Management System

I. INTRODUCTION AND RELATED WORK

Emerging technologies and introduction of Cyber-Physical
Systems (CPS) have initiated new domains of applications that
are more complex and intelligent. Advancement of technology
and fabrication process have enabled production of smaller
sensors and actuators that can facilitate implementation of
complex tasks [1–4]. For instance, new powerful sensors,
computing resources have enabled advancement in automotive
industry such as production of Electric Vehicles (EV) and
implementing Advanced Driver-Assistance Systems (ADAS)
to enable different levels of autonomous driving [5, 6].

Electronic Design Automation (EDA) has helped with
addressing challenges towards design and development of
the CPS. Controllers are integrated within these systems that
comprise of: sensors to monitor the environment and state of
the physical system; micro controllers to process the data and
make decisions; and actuators to apply the control actions
to the physical system [7]. Sophisticated control algorithms
are implemented that make decisions based on phsyical
state and given a complex model. For instance, a Battery
Management System (BMS) utilizes a model of the battery

This material is based upon work partially supported by the National
Science Foundation under Grant No. ECCS 1611349 and the University of
California, Office of the President under Grant No. LFR-18-548175.

in order to decide how much each cell can provide power and
energy at each state. The BMS is responsible to prevent over
loading, over charging, and over discharging the battery cells
considering power requests received from the system, e.g. EV.
Moreover, resource management and scheduling algorithms
may be implemented using Model Predictive Control (MPC)
or Reinforced Learning to distribute the power among the
battery cells or even other types of energy storage such as
ultracapacitor [8, 9]. Hence, the main objective of the BMS is
to improve the available capacity and energy efficiency while
minimizing the battery lifetime degradation that may happen
in lithium-ion battery cells [10, 11].

Decisions made at run time by the controller depend on the
observed state of the physical system and control inputs are
adjusted based on the model. However, the arising challenge
is that whether the controller can trust the sensed data and/or
the model. There are many scenarios that the control loop can
be compromised. The corrupted loop will cause the controller
to make wrong decisions and thereby sway the state of the
physical system to unwanted or unstable states [12–14].
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Fig. 1. Examples of Different Existing Attacks on the Control in a
Compromised CPS. [15]

A) Motivational Example of a Compromised System
Control loops can be compromised from different aspects

such as data sensing, the physical system, or the model (see
Figure 1). For instance, the sensed data can become unreliable
by directly or indirectly attacking the sensors to give wrong
data, no data, or misplaced data (e.g. Denial-of-Service or
Delay Attacks). Example of this attack has been seen in
navigation systems by altering the data received from the GPS
or IMU sensors [16, 17]. Moreover, the physical system which
is the main module of the control loop can be attacked; a
battery may be replaced with a low-quality alternative and
cause the whole CPS to catch on fire since the BMS is unaware
of the alteration of the physical system. Furthermore, biased
machine learned models in the controllers have been seen to
give wrong decisions by changing the control inputs slightly
not visible to naked eyes. For instance, an image classifier
model in an autonomous driving control may detect a ”STOP”
sign as a ”Speed Limit” sign [18].



B) Summary and Conclusion from Observation
According to the observation and experiments, the state-

of-the-art controllers are not intelligent enough to capture
anomaly in the control loop. In other words, the controller
makes the decision based on the current observed state of the
physical system and the given model without considering that
the behavior of the control loop is not normal. Moreover, the
controller does not have any mechanism to secure the control
loop to prevent a compromise and to recover from the attack.

C) Our Novel Contributions
In order to address the challenges with vulnerabilities

existing in control, we propose a novel self-secured machine
learning architecture by employing the following.
1) Control Loop Vulnerabilities (Section II): are described

in details for the current controllers of the automotive CPS.
Different aspects that the control loop can be compromised
and our solution to the issues are explained.

2) Self-Secured Machine Learning (Section III):
architecture is proposed that utilizes a novel Conditional
Generative Adversarial Network (CGAN) to capture the
behavior of the control loop and detect any anomaly at
the run time [19]. Moreover, a novel secure prediction
technique will recover the control loop from the attack.

3) Self-Secured BMS (Section IV): is implemented where
the self-secured machine learning architecture is integrated
into an existing BMS and tested against multiple existing
attack models.
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Fig. 2. Our contributions towards a self-secured machine learning architecture
integrated into automotive CPS.

Figure 2 illustrates the highlighted modules of the self-
secured machine learning architecture that will be integrated
into an existing automotive CPS, e.g. battery management
system. Moreover, it abstracts how the modules are related
to each other to detect a vulnerability and recover from it.

II. CONTROL LOOP VULNERABILITIES

Cyber-physical systems typically implement controllers that
are responsible for interacting with one or more physical
systems to reach an objective and maintain a certain control
quality [20]. In other words, controller seeks to maintain
physical variables at certain set points in spite of unmeasured
disturbances. The interaction between the physical systems and
the controller is abstracted as a closed-loop feedback control.

A. Control Loop Design
Control loops comprise multiple components of sensors,

microcontrollers, and actuators, interacting with a physical
system (see Figure 3).
Sensors are devices that measure and convert certain types of
energy in terms of a physical parameter to an electrical output.
Sensors are used to monitor the state of a physical system or
environment. For instance, a BMS may implement thousands
of sensors on a battery module attached to each cell to measure
their voltage, current, or temperature [8].
Microcontrollers periodically retrieve the data from the
sensors and process them to make a decision for controllable
variables. Typically, Proportional Integral Derivative (PID)
controllers are responsible to accomplish such task. However,
PIDs have very limited knowledge of the physical system
and its dynamic behavior. Hence, Model Predictive Control
(MPC) is a more advanced method of control that relies on
dynamic models of the physical system. They achieve better
control stability and quality of control by optimizing the
control process for a certain time horizon in the future. For
instance, the BMS may process the data to evaluate the battery
cell State-of-Charge (SoC) or battery lifetime - State-of-Health
(SoH) [21]. The BMS will then find the optimal control actions
considering the battery lifetime and energy efficiency.
Actuators are devices that convert an electrical signal to the
required physical parameter, e.g. current, voltage, physical
motion, etc. The electrical signal to the actuators are decided
by the microcontrollers. For instance, the BMS may adjust
the current drawn from the battery cells or activate relay
switches to change the battery structure as part of control
actions resulted from the BMS algorithm [22].
Physical System dynamics will change by triggering the
actuators and applying the control actions decided by the
microcontroller. The control process will continue periodically
to maintain the required set points for the physical system. For
instance, due to the intrinsic variations in battery cells, they
may discharge differently from each other. Hence, the BMS
observing the state of these cells will adjust its controllable
variables (current drawn from the cells) to maintain the balance
among them and increase the available battery capacity.

B. Physical System Attack
Physical system dynamics is typically described using

mathematical equations such as Ordinary Differential
Equations (ODE) or Finite-State Machines (FSM). These
models can be used in MPC algorithms for estimating the
state of the system and evaluating optimum control actions.

Battery cells have different performances and illustrate
different current-voltage (I-V) and thermal behavior during
charge and discharge cycles due to the various materials
used in the production. High performance battery cells are
typically required for high-power or high-energy applications.
However, they cost much more than the low performance
ones. Hence, middle-man-attack may replace or alter the cells
with the counterfeit ones without the BMS being aware of
the alteration. The BMS interacting with the new counterfeit
physical system may not operate properly resulting in unstable



states, e.g. fast draining battery cells or cells catching on
fire [23]. Currently, there exist multiple mechanisms to
distinguish between these cells. For instance, the appearance
and packing can be used to tell the difference or an embedded
RFID tags can be used. However, the current approaches can
be hacked easily leaving the control loop vulnerable.
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Fig. 3. Control loop design (1) in BMS and its vulnerabilities in automotive
CPS: physical attack (2), sensor attack (3), and vulnerable model (4).

C. Sensor Attack
Nowadays, to maintain scalability of the sensor network

with the growing number of sensors implemented in CPS, the
connections are becoming wireless, e.g. Bluetooth, Zigbee.
The wireless network can bring more weak points and add
more vulnerabilities to a control loop. Therefore, the sensor
data can be under multiple attacks, e.g. man-in-the-middle,
fuzz attack, replay attack. Therefore, the controller may not
be able to trust the data for observing the state and making
decisions. For instance, a compromised voltage sensor of a
battery may cause the BMS to over charge or over discharge
the battery resulting in shorter battery lifetime or in the worst
case explosion. Cryptography algorithms are typically used
to secure the communication channel for data. However, they
have their own challenges in terms of complexity scalability.
Furthermore, they will not be effective against physical attacks
to the sensors, leaving the control loop vulnerable.

D. Vulnerable Model
Physical system models utilized by the algorithms will help

the controller identify the current state of the physical system
given the observed data. For instance, an object detection
algorithm classifies the recorded image from the camera
based on a pre-trained machine learning model. The BMS
estimates the SoC of the battery cell given the measured
current drawn from the battery. However, the reliability of
the model and decisions made by the controller are unknown
without testing. In other words, the attacker can remain in a
stealth mode wherein it spoofs the sensors to an extent that is
indistinguishable from noise. However, the attacker can force
the system to get into an unsafe region [24]. For instance, the
object detection algorithm can be fooled to classify an image
completely wrong with the highest probability by slightly
tweaking the image (not visible to naked eye) [15]. On the
other hand, the BMS may be attacked to consume more energy
from the battery cells [25].

III. SELF-SECURED CONTROL

We explained the security and vulnerability challenges with
the current controls. Hence, in this paper, we propose a novel
machine learning architecture using Conditional Generative

Adversarial Network (CGAN) that will be integrated in
parallel to the control loop (see Section III-A). It is responsible
to capture and learn the normal behavior of the physical
system interacting with the controller (see Section III-B). The
architecture is trained by running the CPS and monitoring
the control loop at run time by the manufacturer, before any
attack can happen, at train-only phase. Afterwards, at detect-
n-predict phase, the architecture will monitor the control loop
to detect any anomaly or attack (see Section III-C) and recover
from them (see Section III-D) at run time. Moreover, it will
also get updated and learn new dynamics, if the rate of attacks
detected are low in a certain time window.

A. Machine Learning Architecture

Typically, the dynamic behavior of the control loop
containing the physical system and the control components can
be modeled using mathematical equations and deterministic
modeling. However, the behavior of the physical systems
can get too complex to be modeled by equations. Moreover,
there may be many unknown factors influencing the behavior
that make it challenging to model. For instance, a battery
manufacturing process is not completely deterministic that will
result in various battery cells with different performance and
behavior. Modeling and capturing the exact behavior of the
battery cells is very challenging problem. Hence, data-driven
statistical modeling (machine learning) is applied to describe
the behavior. However, machine learning models may suffer
from unknown biases and sometimes significant prediction
errors. Therefore, we propose a novel conditional generative
adversarial network to capture the behavior. Moreover, it will
also help in enabling a self-secured control.
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Fig. 4. Our novel conditional generative adversarial network architecture for
self-secured control.

Generative Adversarial Networks (GAN) adapts a machine
learning architecture to help with generating a more stable
model [19]. By the definition of GAN, there will be two
neural networks 1) generator (G) and 2) discriminator (D)
(see Figure 4). GAN creates a situation for both neural
networks that can be modeled as a minimax game in game
theory. Hence, for the generator to be successful, it needs
to learn to generate the distribution of the real data for
the physical process very well, such that the discriminator
cannot distinguish. On other hand, for the discriminator to be
successful, it needs to learn the distribution of the real data for
the physical process very well, such that the generator cannot
fool it. Therefore, in order to compete with each other to get
better in this game, both will become the best to generate



and discriminate. Hence, at the equilibrium point, which is
the optimal point in minimax game, the generator will model
the real data, and the discriminator will output probability of
0.5 as the output of the generator equals real data. There are
many variations to the architecture and loss function of GAN
which are similarly applicable to the proposed control and
their performance difference is out of the scope of the paper.

Selection of GAN architecture for the control design would
be mainly due to the following factors: 1) competition between
two networks can provide faster convergence; 2) two networks
are already being trained for purposes required for a secured
control design; 3) the model will be more robust towards any
attack model especially adversarial examples without the need
for application-specific data.

Here in this paper, both neural networks need to learn the
physical process of the control loop for a limited number of
time steps (T = 6). The data is sampled from the signals of the
sensors and actuators in the control loop. The discriminator
verifies whether the physical process data for the period of T is
real or fake (compromised). On the other hand, the generator
attempts to generate similar data to fool the discriminator.

To capture the current state of the physical system and make
the decisions more aware of the context, a Conditional GAN
(CGAN) is implemented. Here in, the beginning portion of the
time steps (Tc = 4 < T ) is given as the condition data to both
networks. Therefore, both networks will predict based on the
given condition. Furthermore, the conditional prediction will
help the generator to later do recovery prediction that will be
discussed in Section III-D.

B. Training and Adjusting

The main challenge of the CGAN architecture is training
two neural networks. Both networks need to converge to an
equilibrium point where none of them are too much stronger
than the other. Otherwise, the discriminator always tells the
difference between the real or fake data or the generator
always generates very closely to real data.

Hence, at the train-only phase, the manufacturer is
responsible to run the controller for a certain period of time
in order to train the CGAN with real data. During the training
process, two optimizations will be conducted to minimize their
loss functions.

Gloss =
1

N

N∑
i=1

H (D (G (ci) , ci) , 1) (1)

where Gloss loss function is to minimize the mean of the
cross entropy between label one (1) and the output of the
discriminator given the fake generated data based on condition
ci over N batch size. In other words, training the generator
to fool the discriminator.

Dreal
loss =

1

N

N∑
i=1

H (D (xi, ci) , 1) (2)

Dfake
loss =

1

N

N∑
i=1

H (D (G (ci) , ci) , 0) (3)

Dloss = Dreal
loss +Dfake

loss (4)

Dloss loss function is to minimize the mean of the
cross entropy between label zero (0) and the output of
the discriminator given the real data and condition ci, plus
the cross entropy between label one (1) and the output of
the discriminator given the fake generated data based on
condition ci.

After training the CGAN, both entropies will reach small
stable values. However, the training will not stop after the
train-only phase. The CGAN will be further trained at the
detect-n-predict phase given the new batches of data sampled
at run time. However, only the consecutive batches are used for
training that their probability of having no anomaly is higher
than an arbitrary defined trust threshold (αreal) for a large
period of time. Meanwhile, at the detect-n-predict phase, the
CGAN is used for anomaly detection and recovering prediction
as will be discussed in the following.

C. Anomaly Detection

The CGAN discriminator captures the real dynamic
behavior of the control loop for T time steps given the
conditional data for Tc time steps. Due to competition with
the generator, it does not get adapted to fake or corrupted data
and it is less biased and more tolerant to adversarial attacks.

Any attack to the vulnerable physical system, sensor, or
model will corrupt the physical process of the control loop (see
Section II). Therefore, the discriminator can give a probability
of detecting an anomaly in the period of the given data x
and condition c. The conditional anomaly detection helps in
capturing the state of the physical system for the last Tc
time steps to make more deterministic decision. When the
probability of the given batch being normal is smaller than a
fake threshold [D (x, c) < αfake], the batch will be labeled as
an anomaly. In other words, the control loop is compromised.

Many defensive mechanisms can be implemented in case of
detecting an anomaly, e.g. triggering default control actions.
However, we introduce a recovering prediction mechanism that
can complement or replace the current mechanisms.

D. Recovering Prediction

Trained CGAN includes a generator neural networks that
is used for generating data (fake) resembling the real data of
the physical process. The trained generator captures the real
dynamic behavior of the control loop for T time steps given
the conditional data for Tc time steps. Therefore, using the
generator model, the dynamic behavior of the physical system
can be predicted, when needed.

When an anomaly is detected, the current conditional data
can be given to the generator network to generate the rest of
the physical data. Although the data is fake, it is very close
to the real data that might have happened when there was no
anomaly. The first estimated physical data: x̃[Tc + 1] ← x̃ =
G (c) will be applied to the control loop.

IV. SELF-SECURED BMS

We apply our novel CGAN machine learning architecture to
an existing battery management system to enable self-security
against various attacks and vulnerabilities.



A. Attack Models

Multiple attack models are applied to the control loop of a
BMS to observe physical system behavior change.
a) Physical Attack: in this attack model, the physical system
is altered, for instance the battery cell is replaced with
lower performance battery cell. The internal resistance and
capacitance of the battery cell will be higher. The behavior is
not detectable by normal BMS since the cell may still provide
enough power required
b) Denial-of-Service Attack: the data retrieved from the
sensors are tampered with uniform distribution noise that is
randomly generated with the probability of 20%. This attack
will directly fool the controller to observe a wrong (random)
state of the system, e.g. higher SoC or lower voltage than
actually available.

B. Integrating Novel Architecture

We apply our CGAN architecture to an existing BMS.
Voltage, current, and power sensor values are sampled every
second. They will represent the dynamic behavior of the
control loop (physical process) - the I-V characteristics of a
battery cell. Moreover, the relationships between these data
values should follow the correct behavior of the control loop
(without a compromised control or sensor).

V. EXPERIMENTAL RESULTS

To test the functionality and performance of our self-secured
control using CGAN, the self-secured BMS is experimented
on multiple attack scenarios and the performance is compared
with a normal BMS and single generator trained individually
for both anomaly detection and recovery prediction.

A. Experiment Setup

The battery, sensors, and actuators are modeled in
MATLAB. Lithium-ion battery cell 18650 has been used for
the experiment. A Nissan Leaf S EV has been driven on
a standard driving cycle NEDC and ECE [8, 10] as case
studies. The training and prediction of the CGAN machine
learning model has been implemented using TensorFlow in
python [26]. Hence, the control algorithms of the self-secured
BMS is running in python and communicating with MATLAB
to retrieve sensor data and transmit control actions.

B. Results and Analysis

We analyze and compare the performance of the self-
secured BMS in terms of model accuracy of CGAN
for training data, anomaly detection performance of the
discriminator networks, and estimation error of the generator
network in prediction.
a) CGAN Model Accuracy: at the train-only phase, the
CGAN model is trained on 10,000 samples of data by driving
the Nissan Leaf S EV on a standard driving cycle NEDC and
ECE. The loss function of the both networks are shown in
Figure 5. It is shown that after a while, the value of cross
entropy for both loss functions reaches a stable value, when
they have captured the physical process thoroughly. There
might be new data samples at run time that the models have

not captured and there should be a peak in the error. However,
these will not be detected as anomaly since they are higher
than than the fake threshold.
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Fig. 5. CGAN generator and discriminator loss function at train-only phase
reaching equilibrium point.

The performance shown in this paper is the result after
tuning the CGAN machine learning networks by optimizing
multiple hyper parameters. The size of the inputs the networks
are Tc = 4 and T−Tc = 2 multiplied by the number of sensors
(3). The discriminator has one hidden layer with 360 neurons
and the generator has one hidden layer with 1200 neurons.
The dimension of added noise in the generator is 15. These
parameters are adjusted such that the models do not over fit
the data and can reach equilibrium point.
b) Anomaly Detection: at the detect-n-predict phase, we
apply two attack models (see Section IV-A) and observe
how the self-secured BMS detects them. Figure 6 illustrates
the metric that the discriminator predicts the behavior to be
correct. When there is no attack it is in a normal range.
However, when the behavior is corrupted in a compromised
control, the values fall below the threshold as shown in the
figure. The threshold is defined based on the minimum value
achieved in the train-only phase. The denial-of-service attack
happens 20% of the time with a uniform distribution. It is
shown that 83% of the attacks are detected. The physical
attack is much harder since the behavior is complex to capture.
However, our self-secured control is able to detect the attack
by identifying the fake behavior. It has been seen that the
single generator technique would not be able to detect more
65% of the attacks. Since the decision is mainly based on the
error of the prediction and current state, it does not capture
behavior change when there is anomaly.
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Fig. 6. Performance of the discriminator in detecting DoS and physical attack.

c) Prediction Recovering Error: at the detect-n-predict
phase, we apply two attack models (see Section IV-A) and
observe how the self-secured BMS recovers from the detected
anomalies by predicting. The error of the prediction values
from the generator is compared with the real values of
the physical system at the run-time detect-n-predict phase.
Figure 7 shows the probability density of the prediction error.
As shown in the figure, the estimation error when a physical



attack happens, is more deterministic than DoS. This is due to
the fact that the physical behavior is compromising the system
in a more deterministic way than a random number jamming
a data (DoS). The average prediction error resulted from the
generator is about 21% which is significantly good for a model
which has no prior knowledge of the system. The error has
decreased compared to a single generator which was 29%.
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VI. CONCLUSIONS

CPS are vulnerable to attacks from sensors/actuators,
unknown biases, and model predictions. Current security
solutions such as cryptography do not address these attacks
from the physical domain. Hence, in this paper, we have
proposed a machine learning architecture using CGAN to
enable a self-secured control. CGAN will capture the dynamic
behavior of the control loop in order to detect any anomaly
resulted from the attacks, and to recover from the attack by
predicting the correct state of system. We experimented a self-
secured BMS by driving a Nissan Leaf S on NEDC, ECE
driving cycles. The self-secured BMS could detect the added
attacks to the system with 83% accuracy and the recovering
prediction error has been 21% on average which improved by
28% and 8%, respectively.
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