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An Exact Quantized Decentralized Gradient
Descent Algorithm

Amirhossein Reisizadeh

Abstract—We consider the problem of decentralized consensus
optimization, where the sum of n smooth and strongly convex
functions are minimized over n distributed agents that form a
connected network. In particular, we consider the case that the
communicated local decision variables among nodes are quantized
in order to alleviate the communication bottleneck in distributed
optimization. We propose the Quantized Decentralized Gradient
Descent (QDGD) algorithm, in which nodes update their local de-
cision variables by combining the quantized information received
from their neighbors with their local information. We prove that
under standard strong convexity and smoothness assumptions for
the objective function, QDGD achieves a vanishing mean solution
error under customary conditions for quantizers. To the best of
our knowledge, this is the first algorithm that achieves vanishing
consensus error in the presence of quantization noise. Moreover,
we provide simulation results that show tight agreement between
our derived theoretical convergence rate and the numerical results.

Index Terms—Communication-efficiency, decentralized opti-
mization, gradient methods, quantization.

I. INTRODUCTION

ISTRIBUTED optimization of a sum of convex functions

has a variety of applications in different areas including
decentralized control systems [2], wireless systems [3], sensor
networks [4], networked multiagent systems [5], multirobot
networks [6], and large scale machine learning [7]. In such
problems, one aims to solve a consensus optimization problem
to minimize f(x) =Y . fi(x) cooperatively over n nodes
or agents that form a connected network. The function f;(-)
represents the local cost function of node 7 that is only known
by this node.
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Distributed optimization has been largely studied in the liter-
ature starting from seminal works in the 80s [8], [9]. Since then,
various algorithms have been proposed to address decentral-
ized consensus optimization in multiagent systems. The most
commonly used algorithms are decentralized gradient descent
or gradient projection method [10]-[13], distributed alternating
direction method of multipliers (ADMM) [14]-[16], decentral-
ized dual averaging [17], [18], and distributed Newton-type
methods [19]-[21]. Furthermore, the decentralized consensus
optimization problem has been considered in online or dynamic
settings, where the dynamic cost function becomes an online
regret function [22].

A major bottleneck in achieving fast convergence in decen-
tralized consensus optimization is limited communication band-
width among nodes. As the dimension of input data increases
(which is the current trend in large-scale distributed machine
learning), a considerable amount of information must be ex-
changed among nodes, over many iterations of the consensus
algorithm. This causes a significant communication bottleneck
that can substantially slow down the convergence time of the
algorithm [23], [24].

Quantized communication for the agents is brought into the
picture for bounded and stable control systems [25]. Further-
more, consensus distributed averaging algorithms are studied
under discretized message passing [26]. Motivated by the en-
ergy and bandwidth-constrained wireless sensor networks, the
work in [27] proposes distributed optimization algorithms under
quantized variables and guarantees convergence within a non-
vanishing error. Deterministic quantization has been considered
in distributed averaging algorithms [28] where the iterations
converge to a neighborhood of the average of initials. However,
randomized quantization schemes are shown to achieve the
average of initials, in expectation [29]. The work in [30] also
considers a consensus distributed optimization problem over
a cooperative network of agents restricted to quantized com-
munication. The proposed algorithm guarantees convergence
to the optima within an error which depends on the network
size and the number of quantization levels. Aligned with the
communication bottleneck described earlier, [31] provides a
quantized distributed load balancing scheme that converges to a
set of desired states while the nodes are constrained to remain
under maximum load capacities.

More recently, 1-Bit SGD [23] was introduced in which
at each time step, the agents sequentially quantize their local
gradient vectors by entry-wise signs while contributing the
quantization error induced in previous iteration. Moreover, in
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[32], the authors propose the Quantized-SGD (QSGD), a class of
compression scheme algorithms that is based on a stochastic and
unbiased quantizer of the vector to be transmitted. QSGD prov-
ably provides convergence guarantees, as well a good practical
performance. Recently, a different line of work has proposed
the use of coding theoretic techniques to alleviate the com-
munication bottleneck in distributed computation [33]-[36]. In
particular, distributed computing algorithms such as MapReduce
require shuffling of data or messages between different phases of
computation that incur large communication overhead. The key
idea to reducing this communication load is to exploit excess in
storage and local computation so that coded messages can be sent
in the phase of shuffling for reducing the communication load.

In this paper, our goal is to analyze the quantized decentral-
ized consensus optimization problem, where node ¢ transmits a
quantized version of its local decision variable (Q(x;) to the
neighboring nodes instead of the exact decision variable x;.
Motivated by the stochastic quantizer proposed in [32], we
consider two classes of unbiased random quantizers. While they
both share the unbiasedness assumption, i.e. E [Q(x)|x] = x,
the corresponding variance differs for the two classes. We
firstly consider variance bounded quantizers in which we have
E [|Q(x) — x||*|x] < o2 for some fixed constant o%. Further-
more, we consider random quantizers for which the variance is
bounded proportionally to the norm squared of the quatizer’s
input, that is E [[|Q(x) — x||?|x] < n?||x]||? for a constant 7?.

Our main contribution is to propose a Quantized Decentral-
ized Gradient Descent (QDGD) method, which involves a novel
way of updating the local decision variables by combining the
quantized message received from the neighbors and the local
information such that proper averaging is performed over the
local decision variable and the neighbors’ quantized vectors.
We prove that under standard strong convexity and smoothness
assumptions, for any unbiased and variance bounded quantizer,
QDGD achieves a vanishing mean solution error: for all nodes
i=1,...,n we obtain that for any arbitrary ¢ € (0,1/2) and
large enough T, E [||xLT — §*||2} <0 (%), where x; 7 is the
local decision variable of node 7 at iteration T and X* is the
global optimum. To the best of our knowledge, this is the first
decentralized gradient-based algorithm that achieves vanishing
consensus error in the presence of non-vanishing quantization
noise. We further generalize the convergence result to the second
class of unbiased quantizers for which the variance is bounded
proportionally to the norm squared of the quatizer’s input and
prove that the propsoed algorithm attains the same convergence
rate. We also provide simulation results — for both synthetic and
real data — that corroborate our theoretical results.

Notation: In this paper, we denote by [n] the set {1,...,n}
for any natural number n € N. The gradient of a function f(x)
is denoted by V f(x). For non-negative functions g and h of ¢,
we denote g(t) = O(h(t)) if there exist ¢y € N and constant ¢
such that g(t) < ch(t) forany ¢t > t;. We use [z] to indicate the
least integer greater than or equal to x.

Paper Organization: The rest of the paper is organized as
follows. In Section II, we precisely formulate the quantized
decentralized consensus optimization problem. We provide the
description of the Quantized Decentralized Gradient Descent al-
gorithm in Section III. The main theorems of the paper are stated
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and proved in Section IV. In Section V, we study the trade-off
between communication cost and accuracy of the algorithm. We
provide numerical studies in Section VI. Finally, we conclude
the paper and discuss future directions in Section VII.

II. PROBLEM FORMULATION

In this section, we formally define the consensus optimization
problem that we aim to solve. Consider a set of n nodes that
communicate over a connected and undirected graph G = (V, €)
where V = {1,...,n} and £ C V x V denote the set of nodes
and edges, respectively. We assume that nodes are only al-
lowed to exchange information with their neighbors and use
the notation A for the set of node i’s neighbors. In our set-
ting, we assume that each node ¢ has access to a local convex
function f; : RP — R, and nodes in the network cooperate to
minimize the aggregate objective function f : RP — R taking
values f(x) = >_I" | fi(x). In other words, nodes aim to solve
the optimization problem

min f(x) =

n
min ; fi(%). ()
We assume the local objective functions f; are strongly convex
and smooth, and, therefore, the aggregate function f is also
strongly convex and smooth. In the rest of the paper, we use
x* to denote the unique minimizer of Problem (1).

In decentralized settings, nodes have access to a single
summand of the global objective function f and to reach the
optimal solution X*, communication with neighboring nodes is
inevitable. To be more precise, nodes need to minimize their
local objective functions, while they ensure that their local deci-
sion variables are equal to their neighbors’. This interpretation
leads to an equivalent formulation of Problem (1). If we define
x; as the decision variable of node 7, the alternative formulation
of Problem (1) can be written as

min_ " fi(x;)
=1

X1,..,Xn ERP 4

subjectto x; =x;, foralli, j € N;. 2)

Since we assume that the underlying network is a connected
graph, the constraint in (2) implies that any feasible solution
should satisfy x; = - - - = x,,. Under this condition the objective
function values in (1) and (2) are equivalent. Hence, it follows
that the optimal solutions of Problem (2) are equal to the optimal
solution of Problem (1), i.e., if we denote {x; }?"_, as the optimal
solutions of Problem (2) it holds that x} = --- = x}, = X".
Therefore, we proceed to solve Problem (2) which is naturally
formulated for decentralized optimization in lieu of Problem (1).

The problem formulation in (2) suggests that each node @
should minimize its local objective function f; while keeping
its decision variable x; close to the decision variable x; of its
neighbors j € N;. This goal can be achieved by exchanging local
variables x; among neighboring nodes to enforce consensus
on the decision variables. Indeed, exchange of updated local
vectors between the distributed nodes induces a potentially
heavy communication load on the shared bus. To address this
issue, we assume that each node provides a randomly quantized
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Algorithm 1: QDGD at Node <.
Require: Weights {w;;}"_,, total iterations T
1: Setx;o = 0and compute z; o = Q(x;0)

2: fort=0,...,T—1do

3 Send z; ; = Q(x;) to j € N; and receive z; ;
4: Compute x; ;1 according to the update in (3)
5: end for

6: returnx;

variant of its local updated variable to the neighboring nodes.
Thatis, if we denote by x; the decision variable of node ¢, then the
corresponding quantized variant z; = Q(x;) is communicated
to the neighboring nodes, ;. Exchanging quantized vectors z;
instead of the true vectors x; indeed reduces the communication
burden at the cost of injecting noise to the information received
by the nodes in the network. The main challenge in this setting is
to ensure that nodes can still converge to the optimal solution of
Problem (2), while they only have access to a quantized variant
of their neighbors’ true decision variables.

III. QDGD ALGORITHM

In this section, we propose a quantized gradient based method
to solve the decentralized optimization problem in (2) and
consequently the original problem in (1) in a fully decentralized
fashion. To do so, consider x; ; as the decision variable of node ¢
atsteptandz; ; = QQ(x; ) as the quantized version of the vector
x;,+. In the proposed Quantized Decentralized Gradient Descent
(QDGD) method, nodes update their local decision variables
by combining the quantized information received from their
neighbors with their local information. To formally state the
update of QDGD, we first define w;; as the weight that node ¢
assigns tonode j. If nodes ¢ and j are notneighbors then w;; = 0,
and if they are neighbors the weight w;; > 0 is nonnegative. At
each time step ¢, each node 7 sends its quantized z;; variant
of its local vector x; ; to its neighbors j € N; and receives their
corresponding vectors z; ;. Then, using the received information
it updates its local decision variable according to the update

Xit+1 = (]. —&+ Ewii)xi,t + e Z WiZj5t — Oé€Vfi(Xi7t),

JEN;
3)
where ¢ and « are positive step-sizes.

The update of QDGD in (3) shows that the updated iterate
is a linear combination of the weighted average of node ¢’s
neighbors’ decision variable, i.e., € Y jeN; WiiZjt, and its local
variable x; ; and gradient V f;(x; ;). The parameter v behaves
as the stepsize of the gradient descent step with respect to local
objective function and the parameter € behaves as an averaging
parameter between performing the distributed gradient update
e(wiXip + Eje/\/,; w;jzj¢ — aV f;(x;)) and using the previ-
ous decision variable (1 — €)x; ;. By choosing a diminishing
stepsize v and averaging using the parameter € we control ran-
domness induced by exchanging quantized variables. The steps
of the proposed QDGD method are summarized in Algorithm 1.
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Remark 1: The proposed QDGD algorithm can be inter-
preted as a variant of the decentralized (sub)gradient descent
(DGD) method [10], [11] for quantized decentralized optimiza-
tion (see Section IV). Note that the vanilla DGD method con-
verges to a neighborhood of the optimal solution in the presence
of quantization noise where the radius of convergence depends
on the variance of quantization error [10], [11], [27], [30].
QDGD improves the inexact convergence of quantized DGD by
modifying the contribution of quantized information received
from neighboring noise as described in update (3). In particular,
as we show in Theorem 1, the sequence of iterates generated
by QDGD converges to the optimal solution of Problem (1) in
expectation.

Note that the proposed QDGD algorithm does not restrict
the quantizer, except for few customary conditions. However,
design of efficient quantizers has been taken into consideration.
Consider the following example as such quantizers.

Example 1: Consider a low-precision representation speci-
fiedby~ € Randb € N. Therange representable by scale factor
7 and b bits is {—v-2°"1 ... —4,0,7,...,7- (2> — 1)}. For
any ky < x < (k + 1) in the representable range, the low-
precision quantizer outputs

k~y wp.1— m,
= Y 4
Qyp) (@) {(k—i— 1)y wp. @ )

For any z in the range, the quantizer is unbiased and variance
. 2
bounded, i.e. E[Q (4.4 (2)] = 2 and E[||Q( 5 (z) — z||?] < I
In Section IV, we formally state the required conditions for
the quantization scheme used in QDGD and show that a large
class of well-known quantizers satisfy the required conditions.

IV. CONVERGENCE ANALYSIS

In this section, we prove that for sufficiently large number of
iterations, the sequence of local iterates generated by QDGD
converges to an arbitrarily precise approximation of the op-
timal solution of Problem (2) and consequently Problem (1).
The following assumptions hold throughout the analysis of the
algorithm.

Assumption 1: Local objective functions f; are differentiable
and smooth with parameter L, i.e.,

IVi(x) = Vfi(y)ll < Llx =yl ©)

forany x,y € RP. !
Assumption 2: Local objective functions f; are strongly con-
vex with parameter (i, i.e.,

(Vfi(x) = Vfily),x —y) > pllx -y, (6)

for any x,y € RP.2

"Local objectives may have different smoothness parameters, however,
WLOG one can consider the largest smoothness parameter as the one for all
the objectives.

2Local objectives may have different strong convexity parameters, however,
WLOG one can consider the smallest strong convexity parameter as the one for
all the objectives.
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Assumption 3: The random quantizer ()(-) is unbiased and
has a bounded variance, i.e.,

E[Qx)x]=x, and E[|Qx)-x|*x] <o* (7

for any x € RP; and quantizations are carried out independently
on distributed nodes.

Assumption 4: The weight matrix W € R™*" with entries
w;; satisfies the following conditions

W=W'" Wi1=1, and null(l — W) =span(1). (8)

The conditions in Assumptions 1 and 2 imply that the
global objective function f is strongly convex with parameter
w1 and its gradients are Lipschitz continuous with constant L.
Assumption 3 poses two customary conditions on the quantizer,
that are unbiasedness and variance boundedness. Assumption 4
implies that weight matrix W is symmetric and doubly stochas-
tic. The largest eigenvalue of W is A;(WW) =1 and all the
eigenvalues belong to (—1,1], i.e., the ordered sequence of
eigenvaluesof Warel = Ay (W) > Xo(W) > --- > X\, (W) >
—1. We denote by 1 — 8 the spectral gap associated to the
stochastic matrix W, where § = max {|A\2(W)[, |\, (W)|} is
the second largest magnitude of the eigenvalues of matrix W.
It is also customary to assume rank(/ — W) = n — 1 such that
null(/ — W) = span(1). We let W, denote the diagonal matrix
consisting of the diagonal entries of W, i.e. {w11,...,wpp}.

In the following theorem we show that the local iterations
generated by QDGD converge to the global optima, as close as
desired.

Theorem 1: Consider the distributed consensus optimization
Problem (1) and suppose Assumptions 1—4 hold. Consider § as
an arbitrary scalar in (0,1/2) and set ¢ = 755 and @ = =25
where ¢; and co are arbitrary positive constants (independent
of T'). Then, for each node ¢, the expected difference between
the output of Algorithm 1 after 7 iterations and the solution of
Problem (1), i.e. X* is upper bounded by

212 2
. ||Xi,T_§*H2} . O<<4nc2D (34 2L/u)

(1-p)?
2 2 — 2\ 1
| Zand W~ Wol >5> ©)
HC2 T

if the total number of iterations satisfies 1" > T, where 1j is a
function of §, ¢1, ¢a, p, L, and A, (W). Moreover,

n
D? = 2L; (Fi0) = £), fi = min fi(x).  (10)

Theorem 1 demonstrates that the proposed QDGD provides
an approximation solution with vanishing deviation from the
optimal solution, despite the fact that the quantization noise does
not vanish as the number of iterations progresses.

By the first glance at the expression in (9) one might suggest
to set 6 = 1/2 to obtain the best possible sublinear convergence
rate which is O (ﬁ) However, Tj, which is a lower bound
on the total number of iterations 7, is an increasing function
of 1/(1 — 24), and by choosing § very close to 1/2, the total
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number of iterations 7' should be very large to obtain a fast
convergence rate close to O (ﬁ) Therefore, there is a trade-
off between the convergence rate and the minimum number of
required iterations. By setting § close to 1/2 we obtain a fast
convergence rate but at the cost of running the algorithm for a
large number of iterations, and by selecting 0 close to 0 the lower
bound on the total number of iterations becomes smaller at the
cost of having a slower convergence rate. We will illustrate this
trade-off in the numerical experiments.

Moreover, note that the result in (9) shows a balance between
the variance of quantization and the mixing matrix. To be more
precise, if the variance of quantization o2 is small nodes should
assign larger weights to their neighbors which decreases (1 —
()2 andincreases | — Wp||?. Conversely, when the variance
o is large, to balance the terms in (9) nodes should assign larger
weights to their local decision variables which decreases the term
|[W — Wp||? and increases (1 — 3) 2.

A. Proof of Theorem 1

To analyze the proposed QDGD method, we start by rewriting
the update rule (3) as follows

Xitp1 = Xig — € |(1 — wii) x40 — Zwijzj,t +aVfi(xit)]-

J#i
(1D
Note that to derive the expression in (11), we simply use the fact
that w;; = 0 when j ¢ N;.

The next step is to write the update (11) in a matrix form.
To do so, we define the function F': R™ — R as F(x) =
o fi(x;) where x; € R? and x = [x1;- - ;X,] € R™ is
the concatenation of the local variables x;. It is easy to verify
that the gradient of the function F' is the concatenation of
local gradients evaluated at the local variable, thatis VF(x;) =
[Vfi(x1.0); -+ ; Vn(Xn,)]. We also define the matrix W =
W @ I € R™P*™P as the Kronecker product of the weight ma-
trix W € R™*™ and the identity matrix I € RP*P. Similarly,
define Wp = Wp ® I € R"*"? where Wp = [w;;] € R™*"
denotes the diagonal matrix of the entries on the main diagonal
of W. For the sake of consistency, we denote by the boldface I
the identity matrix of size np. According to above definitions,
we can write the concatenated version of (11) as follows,

Xpy1 = X¢ — s((I ~Wp)xi+ (Wp — W)z, + onF(xt)).
(12)

As we discussed in Section II, the distributed consensus
optimization Problem (1) can be equivalently written as Problem
(2). The constraint in the latter restricts the feasible set to the
consensus vectors, thatis {x = [x1;- -+ ;X,] : X1 =+ = X, }.
According to the discussion on rank of the weight matrix W,
the null space of the matrix I — W is null( — W) = span(1).
Hence, the null space of I — W is the set of all consensus
vectors, i.e., x € R™ is feasible for Problem (2) if and only if
(I — W)x = 0, or equivalently (I — W)/2x = 0. Therefore,
the alternative Problem (2) can be compactly represented as the
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following linearly-constrained problem,

min
xeR"P

F(x) = i\ X5
(x) ;f( ) .

subjectto (I — W)1/2x = 0.

*

We denote by x* = [X*;...;X"] the unique solution to (13).

Now, for given penalty parameter o > 0, one can define
the quadratic penalty function corresponding to the linearly
constraint problem (13) as follows,

1
ha(x) = 5xT (I-W)x+ aF(x). (14)

Since I — W is a positive semi-definite matrix and F' is L-
smooth and p-strongly convex, the function h,, is L,-smooth
and (1, -strongly convex on R™? having L, = 1 — A, (W) + oL
and p1, = ap. We denote by x7, the unique minimizer of h,, (x),
i.e.,

1
x;, = argmin h (x) = argmin =x' (I - W)x + aF(x).
xeRnp xeRnP
s5)

In the following, we link the solution of Problem (15) to the
local variable iterations provided by Algorithm 1. Specifically,
for sufficiently large number of iterations 7', we demonstrate that
for proper choice of step-sizes, the expected squared deviation
of x7 from xJ, vanishes sub-linearly. This result follows from
the fact that the expected value of the descent direction in (12)
is an unbiased estimator of the gradient of the function A, (x).

Lemma 1: Consider the optimization Problem (15) and sup-
pose Assumptions 1-4 hold. Then, the expected deviation of
the output of QDGD from the solution to Problem (15) is upper
bounded by

2 _ 2 1
E{HXT o XZHQ} < 10 (cma ||W WDH > , (16)

J4Co Té

fore = =gbz, @ = 7z, any 6 € (0,1/2) and T > T}, where
c1 and co are positive constants independent of 7', and

T = max{eellzf?’ [(0102/0%—‘ : ’7(01(2:;;2[/)2>35-‘ }

a7
Proof: See Appendix A. |
Lemma 1 guarantees convergence of the proposed iterations
according to the update in (3) to the solution of the later-defined
Problem (15). Loosely speaking, Lemma 1 ensures that xr is
close to x}, for large T'. So, in order to capture the deviation of
xr from the global optima x*, it suffices to show that x}, is close
to x*, as well. As the problem in (15) is a penalized version of
the original constrained program in (1), the solutions to these
two problems should not be significantly different if the penalty
coefficient «v is small. We formalize this claim in the following
lemma.
Lemma 2: Consider the distributed consensus optimization
Problem (1) and the problem defined in (15). If Assumptions 1,
2 and 4 hold, then the difference between the optimal solutions
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to (13) and its penalized version (15) is bounded above by

e V2neyD (3 + 2L 1
um—xns0< e /me>a (18)

for a = % and T > T, where co is a positive constant
independent of T', 6 € (0,1/2) is an arbitrary constant, and

T = max{ {(1—1—?5(%)1 ; {Cg(ﬂ-l-[/)%-l } . (19

Proof: See Appendix B. |

The result in Lemma 2 shows that if we set the penalty co-
efficient o small enough, i.e., o = O(T“s/ 2), then the distance
between the optimal solutions of the constrained problem in (1)
and the penalized problem in (15) is of O(1%3).

Having set the main lemmas, now itis straightforward to prove
the claim of Theorem 1. For the specified step-sizes € and «
and large enough iterations T' > T} := max {711, T5}, Lemmas
1 and 2 are applicable and we have

E [llxr — x"[] = E [lxr - x;, +x;, - x"[?]

< 2B [|lxr — x4 |2] +2)x; — x|
1 1
§O<w>+o<w>
1
-o(zv).

where we used [la + b||? < 2(||a]|? + ||b]|?) to derive the first
inequality; and the constants can be found in the proofs of
the two lemmas. Since E[||x; r — X*[|?] < E[[|xr — x*||?] for
any ¢ = 1,...,n, the inequality in (20) implies the claim of
Theorem 1.

(20)

B. Extension to More Quantizers

Based on the condition in Assumption 3, so far we have
been considering only unbiased quantizers for which the vari-
ance of quantization is bounded by a constant scalar, i.e.,
E [[|Q(x) — x||*|x] < o2. However, there are widely used rep-
resentative quantizers where the quantization noise induced on
the input is bounded proportionally to the input’s magnitude,
e E [[Q(x) — x|2x] < O (|x]) [321.

Indeed, this condition is more challenging since the set of
iterates norm ||x;|| are not necessarily bounded, and we cannot
uniformly bound the variance of the noise induced by quantiza-
tion. In this subsection, we show that the proposed algorithm is
converging with the same rate for quantizers satisfying this new
assumption. Let us first formally state this assumption.

Assumption 5: The random quantizer )(-) is unbiased and
its variance is proportionally bounded by the input’s squared
norm, that is,

E[Q(x)x] =x, and E[|Q(x) —x|*[x] <n*[x|* @D

for a constant 2 and any x € R?; and quantizations are carried
out independently on distributed nodes.
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Before characterizing the convergence properties of the pro-
posed QDGD method under the conditions in Assumption 5, let
us review a subset of quantizers that satisfy this condition.

Example 2 (Low-precision quantizer): Consider the
precision quantizer Q' : R? — RP? which is defined as

low

Qi (x) = [Ix|| - sign(z:) - &i(x, 5), (22)
where &;(x, s) is a random variable defined as
L W.p. 1—q<@,s>,

2 o (50
and ¢(a,s) =as —1 for any a € [0,1]. In above, the tuning
parameter s corresponds to the number of quantization levels
and! € [0, s) is an integer such that |x;|/||x|| € [I/s, (I +1)/s].
It is not hard to check that [32] the low precision quantizer Q¥
defined in (22) is an unbiased estimator of the vector x and the
variance is bounded above by

E [|Q% (x) — x|[2] < min (:; ;’) X2 24

The bound in (24) illustrates the trade-off between communica-
tion cost and quantization variance. Choosing a large s reduces
the variance of quantization at the cost of increasing the levels of
quantization and therefore increasing the communication cost.

The following example provides another quantizer which
satisfies the conditions in Assumption 5.

Example 3 (Gradient sparsifier): The gradient sparsifier de-
noted by Q%5 : R? — RP is defined as

0 otherwise, (25)

where ¢; is probability that coordinate i € [p] is selected. It
is easy to verify that this quantizer is unbiased, as for each 1,
E [Qg’s(x)] = x;. Moreover, one can show that the variance of
this quantizer is bounded as follows,
(== 1) I
qmm

(1060 -7 = 3 (2~ 1) o <
(26)

i=1

where gmin denotes the minimum of probabilities {q1, ..., ¢}

In the following theorem, we extend our resultin Theorem 1 to
the case that variance of quantizer may not be uniformly bounded
and is proportional to the squared norm of quantizer’s input.

Theorem 2: Consider the distributed consensus optimization
Problem (1) and suppose Assumptions 1, 2, 4, 5 hold. Then, for
each node 7, the expected squared difference between the output
of the QDGD method outlined in Algorithm 1 and the optimal
solution of Problem (1), i.e. X* is upper bounded by

B[l - %2 <0 ( (4”13( 021

deyn B2 |[W = Wp|?\ 1
| denBp?| m)))m)

C2 T
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7%, any 6 € (0,1/2) and T > Ty, where

c1, co and Ty are positive constants independent of 7', and

2 ABDP(342L/w)*  Afo—f1)
(1-p5)2 [

Proof: See Appendix C. |

The result in Theorem 2 shows that under Assumption 5,

the proposed QDGD method converges to the optimal solution

at a sublinear rate of O (7°) which matches the result in

Theorem 1. However, the lower bound on the total number of

iterations Tp for the result in Theorem 2 is in general larger than

T}, for the result in Theorem 1. The exact expression of 7 could
be found in Appendix C.

fore = =55, a =

(28)

V. OPTIMAL QUANTIZATION LEVEL FOR REDUCING OVERALL
COMMUNICATION COST

In this section, we aim to study the trade-off between number
of iterations until achieving a target accuracy and quantization
levels. Indeed, by increasing quantization levels the variance
of quantization reduces and the total number of iterations to
reach a specific accuracy decreases, but the communication
overhead of each round is higher as we have to transmit more
bits. Conversely, if we use a quantization with a small number
of levels the communication cost per iteration will be low;
however, the total number of iterations could be very large. The
fundamental question here is how to choose the quantization
levels to optimize the overall communication cost which is the
product of number of iterations and communication cost of each
iteration.

In this section, we only focus on unbiased quantizers for which
the variance is proportionally bounded with the squared norm
of the quantizer’s input vector, i.e., for any x € R? it holds that
E[Q(x)|x] =x and E [[|Q(x) — x||?|x| < n?||x||* for some
fixed constant 7. Theorem 2 characterizes the (order-wise) con-
vergence of the proposed algorithm considering this assumption.
More precisely, using the result in Theorem 2 and (27) we can
write for each node ¢:

E [|lxir — X*|]
deynB2p?|W — Wp|?| 1
J4Co T8’
(29)

_ [4nc3D* (3 + 2L/ p)?
- (1-5)?

where the approximation is due to considering dominant terms
in By(T) and Bs(T) (See Appendix B and C for notations
and details of derivations). Therefore, given a target relative
deviation error p and using (29) , the algorithm needs to iterate
at least T'(p) where

4nc3D? (3 4 2L/p)?
(1-p5)?

T(p) = [

~ 1/6

deinB2n?|W — Wp|? / ( 1 )1/6

+ Fx||2
jics plix|

(30)
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It is shown in [32] that for the low-precision quantizer defined
in (22) and (23) there exists an encoding scheme Code such that
for any x € RP and 2+ VP < p/2, the communication cost of
the quantized vector satisfies

E [|Code, (Q""(x))]

2
<b+ (3 + glog* (W)) (s +p), (D
where log*(z) = log(z) + loglog(z) + -+ = (1 + o(1)) log

() and b denotes the number bits for representing one floating
point number (b € {32,64} are typical values). For large s,
[32] also proposes a simple encoding scheme Code/, which is
proved to impose no more than the following communication
cost on the quantized vector

E [|Code!,(Q""(x))[]
2 .
<b+ (g + %log* (1 42 +mu;(d’s\/@>> p. (32)

Now we can easily derive the expected total communication
cost (in bits) of a quantized decentralized consensus optimiza-
tion in order for each agent to achieve a predefined target error.
For instance, assume that the low-precision quantizer described
above is employed for the quanization operations. Using this
quantizer, the expected communication cost (in bits) for trans-
mitting a single p-dimensional real vector is represented in (31)
and (32) for two sparsity regimes of the tuning parameter s.

On the other hand, in order for each agent to obtain a rel-
ative error p, the proposed algorithm iterates T'(p) times as
denoted in (30). Therefore, the total (expected) communication
cost across all of the n agents is upper-bounded by nT'(p) -
E [|Codes(Q"F(x))|] and nT(p) - E [|Code)(QF(x))|] for
small and large s, respectively.

Remark 2: We can derive the total communication cost for
the vanilla DGD method ([11]), as well. DGD method updates
the iterations as follows:

Xjt4+1 = WiX4 ¢ + E wiiXje — aVfi(Xie),
JeN;

(33)

where v = ¢/+/T is the stepsize. DGD guarantees the following
convergence rate for strongly convex objectives:

(3+2L/p)*D? ,
—
(1-p)?
~ *(3+2L/p)?D? 1
- a-pp T
Hence, to reach the p approximation of the global optimal, DGD
requires the total number of iterations
A(3+2L/p)*D? 1
(1-p)?
Given that each decision vector requires bp number of bits in
an implementation of DGD (without quantization), the DGD
method induces the communication cost of nTpgp(p)bp.

In the following, we numerically evaluate the communication
cost of the proposed QDGD method for the following least

i — %% <

(34)

Toep(p) = (35)

Pl
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TABLE I
QUANTIZATION-COMMUNICATION TRADE-OFF FOR LEAST SQUARES PROBLEM

# quantization  # iterations code length communication cost

levels (x10?) per vector (bits) (bits) (x107)
s = 10800 216.9 1171
s =50 11.6 949.8 5.5
s* =177 9.91 1062 5.27
s=10° 8.79 1793 7.88
s=10° 8.78 3122 13.71
s =1010 8.78 6443 28.3
s =101 8.78 9765 42.9
s =101 8.78 12420 54.56

squares problem

n

F =Y 5 llAm— bl

i=1

(36)

min
xeRP

We assume that the network contains n = 50 agents that collab-
oratively aim to solve problem (36) over the real field of size
p = 200. The elements of the random matrices A; € RP*P and
the solution X* are picked from the normal distribution (0, 1).
Moreover, we let b, = A;x* + N(0,0.11,). All nodes update
their local variables with respect to the proposed algorithm
and send the quantized updates to the neighbors using a low-
precision quantizer with s quantization levels and b = 64 bits
for representing one floating point number, until they satisfy the
predefined relative error p = 10~2. The underlying graph is an
Erdds-Rényi with edge probability p. = 0.35. The edge weight
matrix is pickedas W = I — mL where L is the Laplacian

with Apax (L) as its largest eigenvalue. We also set § = 0.1.

Table I represents the total expected communication cost
(in bits, as computed using (30), (31) and (32)) induced by
the proposed algorithm to solve (36) using the low-precision
quantizer —as described above— for four representative cases.
As observed from this table and expected from the theoretical
derivations, larger number of quantization levels translates to
less noisy quantization and hence fewer iterations. Also, larger
number of quantization levels induces more communication
cost for each transmitted quantized data variable which results
in larger code length per vector. However, the average total
communication cost does not necessarily follow a monotonic
trend. As Table I shows, the optimal s* = 77 induces the smallest
total communication cost among all levels s > 1. Moreover,
Table I demonstrates the significant gain of picking the optimal
levels s* compared to the larger ones.

VI. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed
QDGD Algorithm on decentralized quadratic minimization and
ridge regression problems and demonstrate the effect of various
parameters on the relative expected error rate. We carry out
the simulations on artificial and real data sets corresponding
to quadratic minimization and ridge regression problems, re-
spectively. In both cases, the graph of agents is a connected
Erd6s-Rényi with edge probability p.. We set the edge weight
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Fig. 1. Relative optimal squared error for three values of quantization noise

variance: o2 € {2,20, 200}, compared with the order of upper bound.

matrix tobe W = I — mL where L is the Laplacian with
Amax (L) as its largest eigenvalue.

A. Decentralized Quadratic Minimization

In this section, we evaluate the performance of the proposed
QDGD Algorithm on minimizing a distributed quadratic objec-
tive. We pictorially demonstrate the effect of quantization noise
and graph topology on the relative expected error rate.

Consider the quadratic optimization problem

n

1
(x) = Z §XTAiX + b/ x,

i=1

min f (37)
where fi(x) = 3x"A;x+b]x denotes the local objective
function of node ¢ € [n]. The unique solution to (37) is therefore
X =— (2", A) (X, b;). We pick diagonal matrices
A such that p/2 of the diagonal entries of each A; are drawn
from the set {1,2,22} and the other p/2 diagonal entries are
drawn from the set {1,271 272}, all uniformly at random.
Entries of vectors b; are randomly picked from the interval
(0,1). In our simulations, we let an additive noise model the
quantization error, i.e. Q(x) = x + 1 where n ~ N (0, %2[,,).

We first consider a connected Erd6s-Rényi graph of n = 50
nodes and connectivity probability of p. = 0.35 and dimension
p = 20.Fig. 1 shows the convergence rate corresponding to three
values of quantization noise o2 € {2,20,200} and § = 3/8,
compared to the theoretical upper bound derived in Theorem 1
in the logarithmic scale. For each plot, stepsizes are pick as
e=rc /T35/2 and o = 02/T5/2 where the constants c1, ¢y are
finely tuned. As expected, Fig. 1 shows that the error rate linearly
scales with the quantization noise; however, it does not satu-
rate around a non-vanishing residual, regardless the variance.
Moreover, Fig. 1 demonstrates that the convergence rate closely
follows the upper bound derived in Theorem 1. For instance, for
the plot corresponding to o = 200, the relative errors are eval-
uated as er, /eg = 0.1108 and e, /ep = 0.0634 for T; = 800
and T» = 3200, respectively. Therefore, er, /e, = 0.57 which
is upper bounded by (%)5 ~ 0.59.

To observe the effect of graph topology, quantization noise
variance is fixed to 02 = 200 and we varied the connectivity
ratio by picking three different values, i.e. p. € {0.35,0.5,1}
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Fig. 2. Relative optimal squared error for three vales of graph connectivity

ratio: p. € {0.35,0.5, 1}, compared with the order of upper bound.

where p. = 1 corresponds to the complete graph case. We also
fix the parameter 6 = 3/8 and accordingly pick the stepsizes
€= cl/T?"S/2 and o = 02/T5/2 where the constants cq, cp are
finely tuned. As Fig. 2 depicts, for the same number of iterations,
deviation from the optimal solution tends to increase as the graph
is gets sparse. In other words, even noisy information of the
neighbor nodes improves the gradient estimate for local nodes.
It also highlights the fact that regardless of the sparsity of the
graph, the proposed QDGD algorithm guarantees the consensus
to the optimal solution for each local node, as long as the graph
is connected.

B. Decentralized Ridge Regression

Consider the ridge regression problem:

D
. A
min f(x) = _llagx = b;[* + S[x[3,  38)
j=1

xeRP

overthedatasetD = {(a;,b;) : j = 1,..., D} where each pair
(aj, b;) denotes the predictors-response variables corresponding
to data point j € [D] wherea; € R'?,b; € Rand A > 0is the
regularization parameter. To make this problem decentralized,
we pick n agents and uniformly divide the data set D among the
n agents, i.e., each agent is assigned with d = D /n data points.
Therefore, (38) can be decomposed as follows:

i = (%), 39
min f(x) ; fi(x) (39)
where the local function corresponding to agent i € [n] is
A
Filx) = [Aix = bi]|* + o~ x|%, (40)
n
and
A =[ag_1ya+1; - aid) € R, (41)
b; = [bi—1)d+1; - 3 bia] € R 42)

The unique solution to (39) is

n -1 n
X = (Z AJA; + AI) (Z AIb,;) .43

=1 i=1
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Fig. 4. Relative optimal squared error for Erd6s-Rényi random graphs with

two vales of graph connectivity ratio: p. € {0.25,0.45}, complete graph and
cycle graph.

To simulate the decentralized ridge regression (39), we pick
“Pen-Based Recognition of Handwritten Digits Data Set” [37]
and use D = 5000 training samples with p = 16 features and
10 possible labels corresponding to digits {‘0”,1",...,‘9’}.
We pick A = 2 and consider a connected Erd6és-Rényi graph
with n = 50 agents and edge probability p., i.e. each assigned
with d = 100 data points. The decision variables are quantized
according to the low-precision quantizer with quantization level
s, as described in Example 2.

Firstly, we fix p. = 0.25 and s = 1 and vary the tuning pa-
rameter §. Fig. 3 depicts the convergence trend corresponding to
two values § € {0.175,0.275}. For each pick of ¢, the stepsizes
are set to € = ¢;/T%%/? and a = ¢y /T%/? with finely tuned
constants ¢y, Ca.

Secondly, to observe the effect of graph density, we let the
quantization level be s = 1 and vary the graph configuration.
For 0 = 0.275, Fig. 4 shows the resulting convergence rates for
Erd6s-Rényi random graphs with two vales of graph connectiv-
ity ratio p. € {0.25,0.45}, complete graph and cycle graph.

C. Logistic Regression

To further evaluate the proposed method with other bench-
marks, in this section we consider the logistic regression where
the goal is to learn a classifier x to predict the labels b; €
{+1,—1}. More specifically, consider the regularized logistic
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Fig. 5. Comparing the proposed QDGD method and the naive DGD with
quantization (see (45)); and varying the quantizations levels s € {1,20}.

regression problem as follows:

1 & A
mip 109 = 53108 (1-+ exp (-bya0) + G, (49
where b; € {+1,—1} denotes the label of the jth data-point
corresponding to the feature vectora; € R'*?. The total D data-
points are distributed among the n nodes such that each node
is assigned with d = D/n samples. The underlying network
is an Erdos-Rényi graph with n = 50 nodes and connectivity
probability p, = 0.45. We generate a data-set of D = 5000
samples as follows. Each sample with label +1 is associated
with a feature vector of p = 4 random gaussian entries with
mean g and variance v2. Similarly, samples with labels —1 are
associated with a feature vector of random gaussian entries with
mean —y and variance 2. We let 1 = 3 and 72 = 1.

In the implementation of the QDGD method, we pick the
parameter 6 = 0.45 and accordingly pick the stepsizes ¢ =
¢1/T%/? and o = ¢, /T%/? where the constants ¢y, ¢, are finely
tuned.

As a benchmark, we compare our proposed QDGD method
with the naive DGD algorithm [11] in which we let the nodes
exchange quantized decision variables. That is, the update rule
at node ¢ and iteration ¢ in this benchmark is

Xit41 = WiiX4 ¢t + Z Wiz — aVfi(Xie), (45)
JjeN;

where we pick the stepsize « = ¢/T with finely tuned constant c.

In both methods, we use the low-precision quantizer in (22)
with s levels of quantization. Note that unlike the proposed
QDGD, the update rule in this benchmark employs only one step-
size . In addition to this comparison, we illustrate the effect of
the quantization level s on the convergence of the two methods.
Fig. 5 demonstrates the loss values resulting from the two meth-
ods for five picks of T' € {750, 1000, 1250, 1500, 1750}. As we
mentioned earlier, the proposed QDGD is an exact method, i.e.
the local models converge to the global optimal model with any
desired optimality gap. However, a naive generalization of the
existing methods (e.g. DGD) with quantization (e.g. in (45))
will result in a convergence to a neighborhood of the global
optimal.
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Fig. 5 also shows that for less noisy quantizers (larger s), nodes
receive more accurate models from the neighbors and hence they
achieve a smaller loss within a fixed number of iterations.

VII. CONCLUSION

We proposed the QDGD algorithm to tackle the problem of
quantized decentralized consensus optimization. The algorithm
updates the local decision variables by combining the quantized
messages received from the neighbors and the local information
such that proper averaging is performed over the local decision
variable and the neighbors’ quantized vectors. Under customary
conditions for quantizers, we proved that the QDGD algorithm
achieves a vanishing consensus error in mean-squared sense, and
verified our theoretical results with numerical studies. Following
our preliminary work [1], there has been a growing interest
in developing quantized decentralized optimization methods
[38]-[40]. In particular, in [38] authors propose to use adaptive
quantization which is kept tuned during the convergence. Au-
thors in [40] relax the convexity assumption and develop another
quantized method for a more general class of objective functions.

An interesting future direction is to establish a fundamental
trade-off between the convergence rate of quantized consensus
algorithms and the communication. More precisely, given a
target convergence rate, what is the minimum number of bits that
one should communicate in decentralized consensus? Another
interesting line of research is to develop novel source coding
(quantization) schemes that have low computation complexity
and are information theoretically near-optimal in the sense that
they have small communication load and fast convergence rate.
Lastly, developing such communication-efficient decentralized
optimization methods for convex or non-convex functions are
highly critical given the rise of deep neural networks in the
learning literature, which is another line in our future directions.

APPENDIX A
PROOF OF LEMMA 1

To prove the claim in Lemma 1 we first prove the following
intermediate lemma.
Lemma 3: Consider the non-negative sequence e; satisfying
the inequality
a b
e+1 < (1 - ﬁ) e+ T35 (46)
for ¢ > 0, where a and b are positive constants, § € [0,1/2),
and T is the total number of iterations. Then, after 7" >
max{a'/?%) exp(exp(1/(1 — 26)))} iterations the iterate ep

satisfies
b
er S O <m) .

Proof: Use the expression in (46) for steps ¢t — 1 and ¢ to
obtain

(47)

a 2
eip1 < (1 — ﬁ) €1

SR P
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where T' > a'/(29)_ By recursively applying these inequalities
for all steps t > 0 we obtain that

a t
etS(l—ﬁ> €0
b a a \t1
+T35{1+(1 )+ o+ (1- 755) }
a \t b [ a \*
< (1= g) ot |2 (1 738)
Ls=0
a \t b a \*
§<1_T) €0+ 735 Z(l—ﬁ>
Ls=0
_(1_a>t6+b_ !
- 25 ) “0 " 738 1—(1- %)
a \! b
= (1-7m) @+ 5 @)

Therefore, for the iterate corresponding to step ¢ = 7" we can
write

a \T b
”fﬁ‘ﬁﬂeﬁﬂﬁ
b
< exp (faT(1’25)> ¢+ —5 (50)
b
=0 <aT5> , (@28

and the claim in (47) follows. Note that for the last inequality
we assumed that the exponential term in is negligible comparing
to the sublinear term. It can be verified for instance if 1 — 26
is of O (1/log(log(T))) or greater than that, it satisfies this
condition. Moreover, setting 6 = 1/2 results in a constant (and
hence non-vanishing) term in (50). [ |

Now we are at the right position to prove Lemma 1. We
start by evaluating the gradient function of h,, at the concate-
nation of local variables at time ¢ > 1, that is VA (x;) = (I —
W)x; + aVF(x¢). Consider the vector z; = [z14;. .. 2n ] as
the concatenation of the quantized variant of the local updates
Xt = [X1.4;- - .;Xn,¢). Then, we obtain that the expression on the
right hand side of (12), i.e.,

Vha(xt)=(Wp—W)z; + (I - Wp)x,+aVF(x,), (52)

defines a stochastic estimate of the true gradient of h,, at time ,
i.e., Vhyo(x:). We let F* denote a sigma algebra that measures
the history of the system up until time ¢ and take the conditional
expectation E[-|F*] from both sides of (52). It yields

E [Vha(x)| 7]
= (Wp = W)E [z|F"] + (I Wp)x¢ + aVF(xy),
=I-W)x;+aVF(xy)
= Vha(xt), (53)

where we used the fact that E [z;|F*] = x; (Assumption 3).
Hence, Vh,, is an unbiased estimator for the true gradient Vh,,.
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Now, we can rewrite the update rule (12) as

Xt+1 = Xt — 86}1,& (Xt), (54)

which resembles the stochastic gradient descent (SGD) update
with step-size ¢ for minimizing the objective function A, (x)
over x € R"P. Intuitively, one can expect that, for proper pick
of step-size, the the sequence {x;;¢ =1,2,...} produced by
update rule (54) converges to the unique minimizer of h, (x).
More precisely, we can write for ¢ > 1,

E [lIxe41 — x5[*1F]
—E Ix: — eVha(x:) = 512 7]
= llx — x5 )12 — 2¢ <xt ~x",E [%ha(xt)w} >
+ % [|Vha (x0)|*| 7]

= |x¢ — XZH2 —2e (x¢ — X.,, Vha(xt))

a?

+ % [|Vha(x0)|*|1 7]

< (1= 200) % = X412 + €°E [ Vha (x| 7] -
(55)

We have used the facts that Vh,, is unbiased and h,, is strongly
convex with parameter u,,. Next, we bound the second term in
(55), that is

E [ Vha(x)|21F]
=E[|(Wp—W)z, + (I—Wp)x, + aVE(x,)|*F']
< ||Vha(x)|? +E [[(Wp — W) (2 —x,)||*|F']

< L2 % — x4 |1 + no®|[W = Wp 1%, (56)

where we used the smoothness of h, and boundedness of
quantization noise. Plugging (56) into (55) yields

E [lxe1 — x4 [P1F] < (1= 2pae +€°L2) [Ix¢ — x5 ||

+e2na?|W — Wp|% (57)

Letus define the sequence e, := E [||x; — x,|?] as the expected

squared deviation of the local variables from the optimal solution
x;, attime ¢ > 1. By taking the expectation of both sides of (57)
with respect to all sources of randomness from ¢ = 0 we obtain
that

er41 < (1= 2puqe + L2 ) ey + 2na?|W — Wp|?
= (1 —e(2ua —L?2))er + e*na®|W — Wpl%. (58)

Notice that for the specified choice of € and T" > T, we have

2
T >T) > % and therefore

— €1

€= T33/2
< coll . 1
= (14 L) T972
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Lo
(1=X,(W)+al)

[
< 2o
Lz,

IN

2
(59)

Therefore, (58) can be written as
err1 < (1—e(2pa — sLi)) ey + e2na?|W — Wp||?
< (1= pag) e + e2na?|W — Wp||?

_ (1 B clcg,u) ot cina?|W — WD||2.
T25 T35

(60)

Now we leta = cicapand b = c3no?||W — Wp||? and employ
Lemma 3 to conclude that

er =E [|lxr — x}|I]

b
<
<0 (am)

_0 can2HW—WD||2i
n [C2 T )’

(61)
and the proof of Lemma 1 is complete.

APPENDIX B
PROOF OF LEMMA 2

First, recall the penalty function minimization in (15). Fol-
lowing sequence is the update rule associated with this problem
when the gradient descent method is applied to the objective
function h,, with the unit step-size v = 1,

U1 = wp — YVhe(u) = Wu, — aVF(uy). (62)

From analysis of GD for strongly convex objectives, the se-
quence {u;:t=20,1,---} defined above exponentially con-
verges to the minimizer of h,, x},, provided that 1 = v < Ll

The latter condition is satisfied if we make o < %(W) im-
plying L, =1 — A\, (W) 4+ oL < 2. Therefore,
Jae — x5 1% < (1= pa) " lug — x5, |12
—(L—ap) - X3P (63)

If we take uy = 0, then (63) implies
lur =< [* < (1 — ap)” x|

<2(1 =) (%" = xl* + [Ix[|?)

=2(1 —ap)" (Ix" = x4 | +nlx[?), (©64)
where fo = f(0) and f* = mingegsf(x) = f(X*). On the
other hand, it can be shown [11] that if o < min{%(w),
;H%L} then the sequence {u; :¢=0,1,---} defined in (63)
converges to the O(ﬁ)—neighborhood of the optima x*, i.e.,

lus — x| <O (&) ) (65)



REISIZADEH et al.: EXACT QUANTIZED DECENTRALIZED GRADIENT DESCENT ALGORITHM

If we take v = %, the condition 7" > T5 implies that o <

min{ H’\’L(W) , u—&l- 7+ }. Therefore, (65) yields

|uTx*|s0<1f5>-

More precisely, we have the following (See Corollary 9 in [11]):

(66)

- Cy aD
ur — x| < v | LX) + + , (67)
|ur | f(gll | — 15)

3

where
1 ulL
2
=1—-=- - — 68
C3 2 /14+L0é7 ( )
LD 2
G _«a 4(,u+L> —2-M+La
1-¢2 1-0 pL pL
2aD
<—(1+ L . (69)
g (L)
From (67) and (66), we have for T' > T5
x5 = x||* = [Ix5, — ur +ur —x"|?
< 2%}, — ur|? + 2/lupy — x*||
<401 —ap) (Ix* = x4 +nlx?)
1 ul T/2
2 1—-=-.— *
+ n<( 7 u+La> 1" ||
D 2
«
+——03B4+2L/u) | . (70)
1-p
Note that for our pick v = 725, we can write

(1= o) < exp (~eT0/2) =i ex(T),

(1 — % . ﬂliLLLa> v < exp (—; - ulerLCQTl_‘s/2>
=:ey(T). (71
Therefore, from (70) we have
I, x| < 1{461<T)n||g*||2
(1 —4ei(T))
+ 2ne3 (1) X717

aD
1-5

+ dney(T) X7 (3+2L/p)

+2nD? (34 2L/p)? <1i~5>2 }

dn (2e1(T) + €3(T)) fo — f*
- (1 — 461(T)) H
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4v2nex(T) [ fo— f* aD
+ 3+2L
Tt )\ w 1-p0t2w
2nD? (34 2L/p)? ( o )2
(1—dey(T)) \1-5/ "~

where we used the fact that ||x*[|? < 2(fo — f*)/u. Let B1(T)
denote the bound in RHS of (72). Given the fact that the terms
e1(T) and e5(T) decay exponentially, i.e. e1(T) = o (a?) and
e2(T) = o (a?), we have

- x <0 (v e+ (125))

B V2neaD (3+2L/p) 1
=0 ( =3 To72 (73)

which concludes the claim in Lemma 2. Moreover, due to the
exponential decay of the two terms e (T") and eo(7'), we have

(72)

2
B1(T) ~ 2nD? (3 + 2L/ p)? (1i“ﬁ> (74)
2nc3D? (34 2L/p)° 1
el = 75 (75)
APPENDIX C

PROOF OF THEOREM 2

Note that the steps of the proof are similar to the one for The-
orem 1. There, we derived the convergence rate of each worker,
i.e. E[||x; r — x*||?] by bounding two quantities E[||x — x7, ||?]
and ||x}, — x*|| as in Lemma 1 and 2 respectively. Here, replac-
ing Assumption 3 by Assumption 5 acquires only the former
quantity to revisit. From (55), we have that for ¢ > 1,

E [llxepr = x[71F] < (1= 2pa8)lx — x;|1°
+ %K [|Vha(x)21F] . 76)

Considering Assumption 5, the second term in RHS of (56) can
be bounded as follows,

E [[[Vha(x0) |12 7]
=E[|(Wp— W)z, + (I-Wp)x, + aVF(x,)|*|F']
< [ Vha(xo)|1? +E [ (Wb — W) (2 = x0)||*| 7]
< L2 |xe = x4 ]2 4+ 72 W = Wo |2l
= L2l — x4l + 72 W = Wl lxe — x5 + 2
< (L2 + 202 W = W) lx, - x|

+ 272 |[W = W Ix5 1.

Moreover, since the solution to Problem (1), i.e. ||X*|| (hence
[Ix*|]) is assumed to be bounded, the (unique) minimizer of
ha(+), 1.e. |x% || is also bounded as follows,

(77)

ol
«
e lI* = llxs — x* + x|

< 2flxg — x| + 2%
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< 2B(T) + W
<2Bi(1) + W = nB%.  (18)

Plugging (77) and (78) into (76) yields
E [[lxe+1 — x5 |1%|1 7]
< (1= 2pae + 2 (L5 + +202 W = Wp|1?)) lIxe — x5 |12

+2nB2||W — Wp|2. (79)
Let us pick
. 1
Tl := max{ e“ 17267 ’V(ClcQH)l/(QJ)—‘ )

(c1<<2+ch>2+2n2||W—WDH?))” . (0)
Ca b

ForT" > Tl, we have

€= T2
- Colb 1
B (2 + C2L)2 + 2772||W — WD||2 T6/2
< Ho
T (1= A(W) 4 al)’ + 202 | W — W2
Mo

= 81

21 2P W~ Wol &0

which together with (79) yields
E [[[xi+1 = x5/ < (1~ pag)E [[Ixes1 —x5[°]
+ 22 B2 | W — W . (82)

Finally, from Lemma 3 with a = cycop and b = 20%n§2n2
|[W — Wp||?, we have that

_ 2enB2?||W — Wp|® 1
- J4Co T
+ exp (—01C2'LLT5) \/ﬁé

Let Bo(T') denote the bound in RHS of (83). Due to the expo-
nential decay of the second term in B2 (T'), we have

E [|lxr — x5 1]

(83)

2e,n B ||[W — Wp|® 1

o A B

E [Jxr - x,[?] <0

and
_2enB2?|W - Wp|® 1
- LiCo Td"

Hence, by putting (84) together with Lemma 2 we conclude the
claim for any T > Ty := max{Ty,T>}.

By(T) (85)
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