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Abstract—There currently exists a mature literature on mod-
eling the aggregate load of a distribution feeder by making use
of measurements at its feeder-head at substation. The primary
application of such feeder-aggregated load models is in sub-
transmission or transmission system analysis. However, there is
a growing need in practice also to model each individual load
across the feeder. If available, such individual load models have
applications in power distribution system analysis; e.g., to better
integrate distributed energy resources or to improve power qual-
ity and reliability. Motivated by this observation, in this paper,
we propose a new method for individual load modeling in power
distribution systems. It works by using the measurements only at
the feeder-head. It takes an innovative approach to analyzing the
load switching events across the distribution feeder itself, instead
of or in addition to relying on upstream voltage events that are
commonly used in feeder-aggregated load modeling. By tracking
the downstream load switching events, the proposed method can
make a robust estimation of the ZIP load model parameters for
all individual loads. The proposed method is examined on small
illustrative test-feeders as well as the IEEE 33-bus test system
under various operating scenarios. The adverse impact of errors
in measurements and system parameters are also investigated on
the performance of the developed load modeling method.

Keywords: Load modeling, distribution system analysis, load
switching events, ZIP model, nonlinear parameter estimation.

NOMENCLATURE

[·]T Transpose of a vector
[·]∗ Complex conjugate of a scalar or a vector
|·| Magnitude of a complex number
I(·) A 0-1 indicator function
k Sequence number of a load configuration
mk Load configuration at sequence number k
ξ Number of measurement load configurations
c Number of distinct load configurations
V Voltage phasor measured at feeder-head
S, P,Q Power measured at feeder-head
Vi Voltage phasor at bus i
Sli, P

l
i , Q

l
i Power of the individual load at bus i

np, nq Load model voltage exponents
Zi Impedance of line i
SWi Binary switching status of the load at bus i
B Bus-injection to branch-flow matrix
ei Canonical basis of Rn
r Residue vector for function F (·)
χ2
v,α Chi-square distribution function with proba-

bility α and with v degrees of freedom.
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I. INTRODUCTION

Accurate load modeling is necessary for power system
operation, control, and planning [1], [2]. Load modeling
has applications in demand response [3], distributed energy
resources (DERs) management [4], Volt-VAR control [5],
voltage stability [6], and optimal power flow [7]. The existing
load modeling methods in the power systems literature can
be classified into two main categories [2]: component-based
methods and measurement-based methods. Component-based
methods make use of a-priori information or statistical as-
sumptions on customer appliances and other load devices. In
contrast, measurement-based methods use field measurements
to learn and update the load model parameters in real-time.
A recent CIGRE report in [2] has found that the majority
of the utilities that were surveyed across 50 countries use
measurement-based methods to estimate the parameters of
their load models.

Measurement-based load modeling methods can be further
classified into three broad categories: static load modeling, c.f.,
[7]–[12], composite load modeling, which is a combination of
static load modeling and dynamic load modeling, c.f., [13]–
[22], and component-based load modeling, c.f., [23]–[26]. Our
focus in this study is on the first group; which is commonly
used to estimate the parameters of the ZIP load model.

When it comes to modeling loads at distribution-level and
based on measurements at feeder-head, the common approach
in the literature is to obtain a ZIP model for the aggregate load
of the distribution feeder. A feeder-aggregated load model pro-
vides sufficient information to conduct most practical upper-
level analysis at sub-transmission and transmission systems.
However, there is still a gap in the literature to model the in-
dividual loads at each medium to low voltage load transformer.
We seek to address this open problem in this paper.

Our focus here is not on the trivial case where a mea-
surement network such as a network of smart meters is
available across the distribution feeder; because in that case the
individual loads are monitored rather directly. We are instead
interested in achieving individual load models by making use
of limited measurements, mainly those at the feeder-head at
the substation; thus to support the many utilities that are not
yet equipped with a complete network of smart meters.

A. Related Work

There exists a rich literature on measurement-based load
modeling methods that, similar to this paper, make use of
the measurements at feeder-head to estimate the parameters of
the load model. In [7], an approximate representation of the
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ZIP model is proposed using semidefinite programming (SDP)
relaxation of the optimal power flow (OPF) problem. In [8],
a multi-state load model is developed for distribution system
analysis. In [9], a measurement-based method is developed
to estimate polynomial as well as exponential load models.
In [10], [11], a measurement-based load model is developed
for voltage stability analysis. In [12]–[14], a measurement-
based feeder-aggregated load model is developed by using
data from phasor measurements units (PMUs). In [15], a
measurement-based load model is obtained using a multi-
curve identification technique. In [16], measurement-based
load modeling is done based on sensitivity analysis. In [17], a
measurement-based per-phase load model is developed under
unbalanced disturbances. Also, different methods are proposed
in [18]–[22] to estimate composite load model parameters,
while the static terms are mostly considered as feeder-head
aggregate load model.

Despite the differences in methodologies and applications,
the above studies on feeder-aggregated load models make use
of a fundamental but similar Circuit Theory concept to analyze
the feeder-head measurements during the voltage events that
occur at the up-stream of the understudy distribution feeder at
the sub-transmission or transmission networks, c.f. [7]–[22].

However, there are three limitations in measurements-based
methods that rely on up-stream voltage events as the main
enabler for load modeling. First, major up-stream voltage
events may not occur frequently; therefore, online load mod-
eling may not be possible for several hours until one such
event occurs. Second, at every occurrence of an up-stream
voltage event, there is practically a different combination of the
individual loads across the distribution feeder that are switched
on; therefore, the measurements obtained from different up-
stream voltage events represent different snapshots of the
understudy distribution feeder; thus, such measurements may
not be directly comparable even for the purpose of modeling
the aggregate feeder load. Third, the aggregate load models
are often not useful to conduct distribution-level analysis,
such as to study the impact of distributed energy resources
or issues related to power quality across distribution feeders.
An individual load model is needed in these cases.

B. Summary of Technical Contributions

This paper proposes a novel method for individual load
modeling in power distribution systems. The main technical
contributions in this paper can be summarized as follows:

1) Instead of or in addition to using up-stream voltage
events as the enabler for load modeling, which is com-
monly used in the literature such as in [7]–[12], we
make use of load switching events across the distribution
feeder itself. In principle, once a load is switched, the
switching event changes the voltage in the rest of the
loads, which causes variation in their active power and
reactive power usage; thus allowing us to estimate load
parameters of the rest of the individual loads.

2) The proposed method can estimate load modeling pa-
rameters of individual loads using measurements only
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Fig. 1. An example distribution feeder: (a) the single line diagram of the
feeder; (b) the total load that is measured at the feeder head.

at the feeder-head, i.e., at the distribution substation. No
measurement is needed at individual loads.

3) We provide a theoretical foundation to determine the
conditions on the extent of measurements needed to
successfully achieve the individual load models.

4) The proposed individual load modeling can be done
sequentially to obtain the load models for a subset of
loads as more measurements become gradually avail-
able. Moreover, we proposed a variation of our method
by using a forgetting factor so as to support estimating
the parameters for time-varying individual loads.

5) By solving a non-liner least-squares problem, it is shown
that the proposed methodology can be extended to utilize
different types of redundancy in measurements in order
to improve load modeling accuracy and robustness.

6) We develop a residue-based bad data detection and
identification method to identify and drop load config-
uration measurements with erroneous switching status;
thus to ensure the accuracy of the load models. This
also helps with the cases with imperfect knowledge
of line impedances, switch statuses, and other system
parameters.

II. PROBLEM STATEMENT

Consider a distribution feeder with n ≥ 2 buses. For now,
and for the simplicity of discussion, suppose the distribution
network does not have any lateral, as shown in Fig. 1(a).
The case for distribution feeders with laterals is discussed
in Section IV-C. Depending on which individual loads are
turned on and which individual loads are turned off, there can
be a total of 2n − 1 possible load configurations, excluding
the no load situation. As time goes by, a variety of load
configurations occur, changing the voltage and power that are
measured at the feeder-head. The measuring can be done, for
example, by using distribution-level phasor measurement unit
(D-PMU), a.k.a., Micro-PMU, [27]–[33]. The measurements
corresponding to a total of 10 load configurations are shown
in Fig. 1(b), indexed as k = 1, . . . , 10. The corresponding
load configurations are denoted by m1, . . . ,m10, which take
numbers between 1 to 26 − 1 = 63; because n = 6 for
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the network in this example. Each individual load can be an
arbitrary combination of constant impedance, constant current,
and constant power load components. The complex power that
is drawn by the load at bus i under load configuration mk

is denoted by Sl,mk

i . In this paper, we seek to answer the
following question: Can we model each of the n individual
loads in Fig. 1(a) by studying a sequence of measurements at
the feeder-head in Fig. 1(b)?

Of course, there exist some special cases for which the
above problem is somewhat trivial. For example, if at a load
configuration, there is only a single load that is turned on and
all other loads are turned off, then modeling that single load is
relatively easy, because what is being monitored at the feeder
head is the single load itself plus the power loss on distribution
lines. However, beyond such relatively trivial special cases,
answering the above question can be challenging.

III. LOAD MODELING METHOD

A. The First Set of Equations: Circuit Model
For a given k, consider the measurements that are obtained

at the feeder-head during load configuration mk. According to
the law of complex power conservation, we have:

Smk
=

n∑
i=1

(
Sl,mk

i SWmk
i

)
+

n∑
j=1

Zj

∣∣∣∣ n∑
d=j

(Sl,mk

d

V mk

d

)∗
SWmk

d

∣∣∣∣2, (1)

where the first term is the total load, and the second term is the
total loss. Binary variable SWmk

i is one if the individual load i
is turned on during load configuration mk; and zero otherwise.
Note that, we could define a notation for current and replace
(1) with an equation based on the Kirchhoff’s Current Law
(KCL). However, in this paper, we present the circuit model
only in terms of complex power and voltage phasor.

Next, we write the Kirchhoff’s Voltage Law (KVL) for the
circuit in Fig. 1(a). Any loop can be used for this purpose.
In fact, there are n(n+ 1)/2 loops in this circuit that can be
used to write the KVL equations. However, as proved by using
Graph Theory in [34], [35], one can write only n independent
KVL equations in this circuit. This can be achieved by writing
the KVL equations for the n loops between the substation and
every node i = 1, · · · , n, as shown below:

V mk
i = Vmk

−
i∑

j=1

Zj

( n∑
d=j

(Sl,mk

d

V mk

d

)∗
SWmk

d

)
. (2)

Together, the n+1 independent complex nonlinear equations
in (1) and (2) provide the model for the circuit. The complex
power Smk

and the voltage phasor Vmk
, which are measured

at the feeder-head, as well as the lines impedances Zj for
j = 1, . . . , i, are the known parameters in these equations.
In contrast, the individual load complex power Sl,mk

i and the
individual node voltage phasor V mk

i are the unknowns to be
determined for all i = 1, . . . n. For any load configuration mk,
the number of unknowns can be counted as:

n+

n∑
i=1

SWmk
i , (3)

where the first term counts V mk
i for every node i = 1, . . . , n;

and the second term counts Sl,mk

i for every load i that is turned
on under load configuration mk, for which SWmk

i = 1.
For every load configuration mk, the system of non-linear

equations in (1) and (2) can have a solution only if one single
load is switched on, in which case the summation in the second
term in (3) is one. In all other cases, the system of nonlinear
equations in (1) and (2) is under-determined.

Suppose more load configurations occur as time goes by.
This will provide new equations and also introduce new un-
knowns. Suppose the measurements are available for c distinct
load configurations. The following upper bound always holds:

c ≤ min{ξ, 2n − 1}. (4)

In Fig. 1(b), we have ξ = 10 but c = 9; because load
configurations m2 and m5 are the same.

Given the measurements at the feeder-head for c distinct
load configurations, the number of unknowns becomes:

Number of Unknowns = c× n+

c∑
k=1

n∑
i=1

SWmk
i , (5)

and the number of independent equations increases to:

Number of Equations = c× (n+ 1). (6)

The first term in (5) counts voltage phasor V mk
i in every node

i = 1, . . . , n and each of the c distinct load configurations
k = 1, . . . , c. The second term in (5) counts complex power
Sl,mk

i for every load i = 1, . . . , n that is turned on under load
configuration mk for each of the c distinct load configurations.

The system of non-linear equations in (1) and (2) for c
distinct load configurations can have a solution only if a single
load is switched on in every load configuration k. This occurs
only if the following inequality holds:

c∑
k=1

n∑
i=1

SWmk
i ≤ c. (7)

In that case, the total number of unknowns in (1) and (2)
would be less than or equal to the total number of independent
equations in (1) and (2). In all other cases, we lack sufficient
independent equations. This can potentially be resolved by
deriving new equations from load models, as we discuss next.

B. The Second Set of Equations: Load Model

Any load with any combination of active and reactive power
consumption can be expressed in the generic form of a ZIP
load [2]. Specifically, for any two distinct load configurations
mk and mh, the complex power consumption at the individual
load at bus i can be modeled as:

Sl,mk

i = P l,mh

i

(
|V mk
i |
|V mh
i |

)npi

+ jQl,mh

i

(
|V mk
i |
|V mh
i |

)nqi

. (8)

If np = 0, 1, 2, then the active power component of the load
is constant power, constant current, and constant impedance,
respectively. For all other values of np, the active power
component is a combination of these three load elements. The
reactive power component can be defined similarly using nq .
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Note that, for each individual load i, one can construct the
load model in (8) only if there do exist at least two load
configurations mk and mh in which load i is turned on. In
other words, we cannot introduce the load model in (8) for
individual load i unless the following inequality holds:

c∑
k=1

SWmk
i ≥ 2. (9)

Thus, unless we state otherwise, we assume that the above
condition holds for all loads i = 1, . . . , n. The special case
when (9) does not hold will be discussed in Section IV-B.

The load models of the form in (8) can provide additional
equations that can be combined with the equations in (1) and
(2) to obtain the unknowns that we identified in (5). However,
the load equations in (8) also introduce new unknowns,
because npi and nqi for buses i = 1, . . . , n, are not known.
Therefore, the number of new unknowns becomes:

Number of Unknowns = n. (10)

Here we count np + jnq as one unknown complex number.
Next, we need to identify how many of the new equations in

the form of (8) are independent; and thus useful for identifying
the unknown individual loads in our system. This matter is
addressed in a Theorem as presented below.

Theorem 1. Given c distinct load configurations, the num-
ber of independent complex equations in the form of (8) is:

Number of Equations =
n∑
i=1

c∑
k=1

SWmk
i − n. (11)

Proof: For each individual load i, let us define:

ci =

c∑
k=1

SWmk
i . (12)

One can write a load model equation of the form in (8) for
any two distinct load configurations mk and mh. Therefore,
the total number of load model equations of the form in (8)
that we can write for each individual load i is:(

ci
2

)
=

1

2
ci × (ci − 1). (13)

However, these many equations are not independent; because
the expression in (8) preserves transitive relation [36]. For
instance, for a given individual load i, suppose we have ci = 3.
That is, suppose load i is turned on in three load configurations
mk, mh, and mg . From (8), we have:

P l,mk

i + jQl,mk

i = P l,mh

i

(
|V mk
i |
|V mh
i |

)npi

+ jQl,mh

i

(
|V mk
i |
|V mh
i |

)nqi

, (14)

P l,mk

i + jQl,mk

i = P
l,mg

i

(
|V mk
i |
|V mg

i |

)npi

+ jQ
l,mg

i

(
|V mk
i |
|V mg

i |

)nqi

, (15)

P l,mh

i + jQl,mh

i = P
l,mg

i

(
|V mh
i |
|V mg

i |

)npi

+ jQ
l,mg

i

(
|V mh
i |
|V mg

i |

)nqi

, (16)

However, the above equations are not independent due to their
transitive relationship. Any one of the three equations in (14)-
(16) can be obtained by applying proper non-linear operators
to the other two equations. For instance, we can obtain (16)

by dividing the real and the imaginary parts of (14) by the real
and the imaginary parts of (15), respectively, as shown below:

P l,mk

i

P l,mk

i

=
P l,mh

i

P
l,mg

i

×
[(
|V mk
i |
|V mh
i |

)npi

/

(
|V mk
i |
|V mg

i |

)npi
]

⇒ P l,mh

i = P
l,mg

i

(
|V mh
i |
|V mg

i |

)npi

.

(17)

The calculation for the imaginary part is similar and omitted
for brevity. The above transitive relationship for the system of
nonlinear equations in (8) is the generalization of the concept
of linear dependency in system of linear equations.

In order to obtain the largest subset of independent load
equations from the total number of equations in (13), first,
for each individual load i, we consider one of the load
configurations as the reference configuration. Next, we write
ci − 1 different load equations of the form in (8) based on
the reference configuration together with each of the ci − 1
remaining load configurations. All such ci − 1 load configu-
rations are, by-construction, independent. Once we repeat this
procedure for all n loads, we can obtain several independent
load equations, at a total number equal to the one in (11). �

C. Combining Circuit Model and Load Model

Suppose we have collected the measurements at the feeder
head under c distinct load configurations. Also, suppose we
combine the Circuit Model in Section III-A and the Load
Model in Section III-B. We propose Algorithm 1 to obtain the
individual loads model. This algorithm can be used as long as
enough load configuration measurements are available. This
raises the following question: What is the smallest c, denoted
by cmin, in order to solve the system of nonlinear equations
in (6) and (11) to obtain the set of unknowns in (5) and (10)?
This question is answered in a Theorem as presented below.

Theorem 2. Suppose the inequality in (9) holds for all loads
i = 1, . . . , n, where n > 2. The minimum number of distinct
load configurations in order to solve the system of equations
in (6) and (11) to obtain the unknowns in (5) and (10) is:

cmin = 2 n. (18)

Proof: We need the number of unknowns to be less than or
equal to the number of independent equations. From (6), (11),
(5), and (10), this can be expressed as the following inequality:

n× c+
n∑
i=1

c∑
k=1

SWmk
i + n

≤ c×
(
n+ 1

)
+

n∑
i=1

c∑
k=1

SWmk
i − n.

(19)

Once we cancel out the common terms on both sides and
reorder the rest of the terms, we can express the above
inequality as c ≥ 2n. Therefore, cmin = 2n. �

Recall from Section II that our goal is to model each of
the n individual loads in Fig. 1(a) by studying the sequence
of measurements in Fig. 1(b). Theorem 2 indicates how far
in the sequence of measurements we must go before we can
obtain the load models. From Theorem 2, any arbitrary but
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Algorithm 1 Individual Load Modeling
Step 1: Obtain the Circuit Model
for each load configuration mk do

Apply law of complex power conservation → (1)
Apply KVL between substation and every node i → (2)

end for
Step 2: Obtain the Load Model
for every node i do

Calculate complex power consumption → (8)
end for
Step 3: Solve the system of equations in (1), (2), and (8)
return Solutions

distinct 2n load configurations that satisfy (9) for all n loads
can be used in Algorithm 1 to obtain the unknowns and model
the loads.

There are several algorithms available in the literature to
solve a system of non-linear equations [37], [38]. In this study,
we use the Levenberg-Marquardt algorithm, which is iterative
and commonly used in curve-fitting problems [38]. The initial
guess for all unknown parameters in both circuit model and
load model are set to 1 per-unit.

Note that, the unknowns that are of interest in this paper
are npi and nqi . The other unknowns, i.e., V mk

i and Sl,mk

i ,
act as auxiliary variables to help us identify npi and nqi .

IV. REMARKS AND EXTENSIONS

A. Redundant Load Configurations
Recall from Section II that there exist 2n−1 possible distinct

load configurations for an n-bus system. From Theorem 2, as
few as 2n of them is sufficient to solve the load modeling
problem. But what if we continue collecting new distinct load
configurations beyond cmin? What can we do with the remain-
ing 2n − 1− 2n distinct load configurations? Furthermore, is
there any benefit to also look into the duplicate load con-
figuration events? For example, recall that load configuration
m5 was the duplicate of load configuration m2 in Fig. 1(b).
Finally, can we also make use of the upstream voltage events?
Note that, so far, we did not use such measurements.

To address the above questions, we collectively refer to the
following items as redundant load configurations:

• Any additional distinct load configuration for c > cmin;
• Any duplicate of an existing load configuration;
• Any major upstream voltage event.

We are interested in using the above redundant configurations
to enhance load modeling accuracy in presence of errors in
measurements. Note that, the above redundant load configura-
tions introduce new unknowns in the Circuit Model, but they
do not change the number of unknowns in the Load Model.

It is not difficult to construct the new equations and
identify the new unknowns similar to (6)(11) and (5)(10).
The details are omitted due to space limitation. Let
F (Vmk

, Smk
, V mk
i , Sl,mk

i , ns) = 0 denote the resulting sys-
tem of equations. We can obtain the individual load parameters
by solving the following non-linear least-squares problem:

minimize
V

mk
i ,S

l,mk
i ,ns

∥∥∥F (Vmk
, Smk

, V mk
i , Sl,mk

i , ns)
∥∥∥
2
. (20)

Again we can use a variation of the Levenberg-Marquardt
algorithm, called the damped least-squares algorithm, to solve
the problem in (20). As in Section III-C, our ultimate goal
here is to obtain the values of npi and nqi for all n loads.
The difference compared to Section III-C is that we now have
more equations and more auxiliary variables. Of course, if the
redundant equations are removed and if there is no error in
measurements, then solving problem (20) reduces to solving
a system of nonlinear equations, just like in Section III-C.

B. Sequential Load Modeling

What if the inequality in (9) does not hold for all n
individual loads? Let us define:

n̂ =

n∑
i=1

I

(
c∑

k=1

SWmk
i ≥ 2

)
, (21)

where I(·) is a 0-1 indicator function. Here, n̂ ≤ n denotes the
number of individual loads that do satisfy the inequality in (9).
Let us also define ĉ as a subset of c distinct load configurations
in which all individual loads that are turned on do satisfy the
inequality in (9). Of course, we have ĉ ≤ c. We can now apply
Theorem 2 to n̂ and ĉ and similarly achieve ĉmin = 2n̂.

The above analysis can lead to developing a sequential load
modeling approach, as shown in Algorithm 2. As time goes
by, a variety of load configurations occur. Our algorithm must
wait until such time that there exists an n̂ > 2 and ĉ = 2n̂. It
can then obtain the model for the n̂ loads. As measurements
from more load configurations become available, Algorithm 2
gradually and sequentially models all individual loads across
the feeder.

Algorithm 2 Sequential Load Modeling
while there is a new load configuration measurement do

Consider ĉ load configurations measured so far.
Set n̂ according to (21).
if Theorem 2 is satisfied for ĉ and n̂ then

Run Algorithm 1 for ĉ and n̂
return Solutions

end if
end while

C. Distribution Feeder with Laterals

The feeder in Fig. 1(a) does not have any lateral. However,
in practice, most distribution feeders do have laterals. In order
to incorporate laterals in our model, we need to revise and
replace the Circuit Model in (1) and (2) with

Smk
=

n∑
i=1

(
Sl,mk

i SWmk
i

)
+

n∑
j=1

Zj

∣∣∣∣ n∑
d=j

(Sl,mk

d

V mk

d

)∗
SWmk

d eTj Bed

∣∣∣∣2, (22)

V mk
i = Vmk

−
i∑

j=1

Zje
T
j Bei

( n∑
d=j

(Sl,mk

d

V mk

d

)∗
SWmk

d eTj Bed

)
,

(23)
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where B is the bus-injection to branch-flow matrix [39], ei
is the canonical basis of Rn, and eTi Bej is 1 if the power
injection of bus j flows on branch i, and zero otherwise. An
example to construct matrix B is given in Section V-A.

D. Imperfect Knowledge of Load Switching Status

So far, we have assumed that the switching status SWmk
i

of the individual loads is already known in each measured
load configuration mk. This can be achieved by using the
existing methods that are designed to identify load switching
on distribution networks. For example, in [30], the location
of each load switching event along the distribution feeder
is identified by applying the Compensation Theorem from
Circuit Theory to the measurements that are available at the
feeder-head and at the feeder-tail. No measurement is needed
at individual loads.

We do recognize that, in practice, the methods such as
the one in [30] are not entirely precise. As a result, our
knowledge of the load switching status is imperfect and may
carry errors. However, this issue can be resolved by the use of
the redundant load configurations that we proposed in Section
IV-A. Specifically, the use of redundant load configurations
allows us to conduct bad data detection in order to identify
and drop load configurations with erroneous switching status.

Let r denote the residue vector for function F (·) in the least-
squares problem in (20). Using the Chi-squares test [40], we
detect erroneous load configurations if:

I
(
rT r > χ2

v,α

)
= 1, (24)

where χ2
v,α is the Chi-square distribution function correspond-

ing to a detection confidence level with probability α, and with
v = ξ − 2n degrees of freedom in solving problem (20) due
to having ξ − 2n redundant equations. Once the existence of
an erroneous switch status is detected using the Chi-square
test, we next apply the largest normalized residual (LNR) test
to identify such erroneous load configurations and drop them
from the analysis to assure accurate and robust load modeling.

E. Time-Varying Load Modeling

In practice, the parameters of the load models may change
over time. In order to track time-varying load modeling
parameters, we propose to apply forgetting factors to load
configurations as well as using the Chi-squares test and the
LNR test as in Section IV-D. Specifically, suppose the mea-
surements corresponding to c load configurations are available,
where c > cmin and v = ξ − 2n is the number of redundant
configurations. We define the forgetting factors as follows:

β(k) =

{
λv−k+1 k = 1, . . . , v

1 k = v + 1, . . . , 2n
(25)

where 0 < λ ≤ 1. We use β(k) as the weight corresponding
to equation number k in the non-linear least-squares problem
in (20). This allows us to estimate the load model parame-
ters based on the most updated load configurations. Similar
to the bad data detection method that we used in Section
IV-D to detect error in load switching status, here, we use
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Fig. 2. Single-line diagram of the feeder in the two basic test cases in Section
V-A. Case I does not include the lateral. Case II does include the lateral.

the Chi-squares test and the LNR test in order to detect,
identify, and drop load configurations that impose error to the
aforementioned weighted non-linear least-square problem. As
a result, whenever a load changes, the first few subsequent load
configuration measurements are dropped until the available
load configuration measurements are sufficient to achieve an
accurate load modeling result with low and consistent residues.

F. The Use of Multiple Sensors
The methodology that is proposed in this paper is intended

to allow individual load modeling by making use of measure-
ments from as few as only a single sensor that is installed
at the feeder head. Furthermore, in principle, the proposed
methodology is applicable to any distribution feeder with an
arbitrary number of nodes and laterals. Nevertheless, as the
number of nodes increases, one may start facing numerical
issues in order to solve the formulated nonlinear system of
equations due to its size. Therefore, when it comes to long
distribution feeders with a large number of nodes, such as
the case of the IEEE 123-bus test system in Section V-I, one
needs to start installing additional sensors. This can be done by
simply installing the additional sensors at the head of the long
laterals. Importantly, the methodology that is needed to solve
the load modeling problem remains the same. On one hand,
each lateral whose aggregate load is measured at its head,
can be seen as an independent load modeling problem, whose
individual loads can be modeled using Algorithms 1 and 2. On
the other hand, the measured aggregate load of such laterals
can be used as known parameters when it comes to solving
the combined circuit models and load models for the rest of
the feeder, again using Algorithms 1 and 2. This essentially
breaks down the load modeling problem into smaller problems
of the same type.

V. CASE STUDY AND RESULTS

All the case studies in this section are done in PSCAD [41]
to construct the distribution feeder and all load configurations.

A. Basic Results With and Without Laterals
This section investigates the effectiveness of the proposed

method based on using the sufficient number of load config-
urations as presented in Theorem 2. To do so, we apply the
proposed method to two cases as defined in Fig. 2:
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TABLE I
LOAD CONFIGURATIONS FOR CASE I IN SECTION V-A.

Configuration SW1 SW2 SW3 SW4 Time
m1 1 0 0 0 [0 , t1]
m2 0 1 1 0 [t1 , t2]
m3 0 1 0 1 [t2 , t3]
m4 0 0 1 1 [t3 , t4]
m5 1 1 1 0 [t4 , t5]
m6 1 1 0 1 [t5 , t6]
m7 1 0 1 1 [t6 , t7]
m8 1 1 1 1 [t7 , t8]

TABLE II
LOAD CONFIGURATIONS FOR CASE II IN SECTION V-A.

Configuration SW1 SW2 SW3 SW4 SW5 SW6 Time
m1 1 0 0 1 0 0 [0 , t1]
m2 1 0 0 1 0 1 [t1 , t2]
m3 1 1 0 0 1 0 [t2 , t3]
m4 0 0 1 1 0 1 [t3 , t4]
m5 0 1 1 1 0 1 [t4 , t5]
m6 1 1 0 0 1 1 [t5 , t6]
m7 0 1 1 0 1 1 [t6 , t7]
m8 1 0 1 1 1 0 [t7 , t8]
m9 0 1 1 1 1 1 [t8 , t9]
m10 1 1 1 0 1 1 [t9 , t10]
m11 1 1 1 1 1 0 [t10 , t11]
m12 1 1 1 1 1 1 [t11 , t12]

• Case I: Feeder without no lateral;
• Case II: Feeder with lateral.

Both cases are shown in Fig. 2. The load model parameters
are considered based on the experimental studies in [42], [43].
For example, the load in bus 1 is a combination of residential
appliances, including coffee maker, LED and tungsten lights,
and LCD television, as described in [42]. Recall from Section
II that there are 24 − 1 and 26 − 1 possible distinct load
configurations in Case I and Case II, respectively. From
Theorem 2, the individual load models for Case I and Case II
can be obtained from any 8 and 12 distinct load configurations,
that hold (9), respectively. The examples are given in Tables I
and II, respectively. The resulting feeder-head measurements
are shown in Figs. 3 and 4 for Case I and Case II, respectively.

For Case I, the Circuit Model includes 40 equations and 52
unknowns, see (5) and (6). The Load Model adds 16 additional
equations and 4 new unknowns, see (10) and (11). Thus, the
combined system of nonlinear equations has 56 equations and
56 unknowns. For Case II, the total number of equations is
126 and the total number of unknowns is also 126. Matrix B
for Case II in Fig. 2 is obtained as:

B =


1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

 . (26)

Figs. 5(a) and (b) shows the true and the estimated individ-
ual load models for Case I and Case II, respectively. We can
see that the proposed method works well on both distribution
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Fig. 3. Feeder-head measurement parameters for Case I: (a) voltage magni-
tude; (b) voltage angle; (c) active power; (d) reactive power.
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Fig. 4. Feeder-head measurement parameters for Case II: (a) voltage magni-
tude; (b) voltage angle; (c) active power; (d) reactive power.

feeders with or without laterals. The error in individual load
modeling is less than 0.01% for both Case I and Case II.

Figs. 6(a) and (b) show the true and estimated voltage
phasors for Case I and Case II, respectively. The proposed
method can also estimate auxiliary variables by 0.01% error.
Similar results are obtained in estimating active and reactive
power consumption, that are omitted due to brevity.

B. Performance Comparison

Before we get into the details in this section, we must
emphasize that, to the best of our knowledge, this paper is
the first study that provides individual load model parame-
ters using feeder-head measurements. Therefore, we cannot
compare the individual load modeling method in this paper
with another individual load modeling method. But what we
can do, is to aggregate the individual load models that we
obtain here, and then compare the result with the result of
applying the feeder-aggregated load modeling methods in the
literature, such as in [7]–[12]. The test setup to conduct such
performance comparison is similar to Case II in Section V-A.
A total of 15 load configurations are considered, as given in
Table III, out of which three cases are caused by upstream
voltage events. They are denoted by m3, m7, and m12. The
remaining 12 cases are distinct load configurations.
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The results are shown in Figs. 7(a) and (b) with respect to
the feeder-aggregated load parameters np and nq , respectively.
Here, comparison is done with the method in [9]. We can make
three key observations. First, one can use the feeder-aggregated
load modeling method in [9] no sooner than time t2, because
time t2 is the first time in this case study that an upstream
voltage event occurs. In contrast, the method that is proposed
in this paper can be used as early as time t1, i.e., even before
an upstream voltage event occurs. Second, as time goes by,
the feeder-aggregated model using the method in [9] is not
updated, except at time t6 and time t11, i.e., when the second
and the third upstream voltage events occur, respectively. In
contrast, the method that is proposed in this paper is updated
much more frequently. Finally, and most importantly, we can
see that every time that the feeder-aggregated model is updated
using the methods in [9], it matches the aggregated model that
is obtained based on the method in this paper.

All in all, we can conclude that the method in this paper is
equally good compared to the methods in the literature as far
as feeder-aggregated load modeling is concerned whenever an
upstream voltage event occurs; with an added advantage that
it can update such feeder-aggregated model more frequently.
Of course, our method also provides individual load models,
which is the primary goal of this paper.

C. Tackling Errors in Measurements

In practice, sensors, such as micro-PMUs, may not be
precise, mostly due to errors in CTs and PTs. Several methods
have been introduced in the literature to improve data quality
in synchrophasors, c.f., [44], [45]. In this section, we assume
that the measurments for load modeling applications still
include some levels of error. Monte Carlo method is used
to generate different scenarios for different levels of error in
feeder-head measurements. The test setup is similar to Case
II in Section V-A. However, this time, we also consider 12
redundant load configurations of all three types, as in Table IV.
These scenarios are in addition to the 12 load configurations
in Table II. The upstream events are 1.05 per unit step-up
in feeder-head caused by an upstream voltage regulator. The

TABLE III
LOAD CONFIGURATIONS FOR CASE II IN SECTION V-B.

Configuration V(pu) SW1 SW2 SW3 SW4 SW5 SW6 Time
m1 1.00 1 0 0 1 0 0 [0 , t1]
m2 1.00 1 0 0 1 0 1 [t1 , t2]
m3 0.95 1 0 0 1 0 1 [t2 , t3]
m4 0.95 1 1 0 0 1 0 [t3 , t4]
m5 0.95 0 0 1 1 0 1 [t4 , t5]
m6 0.95 0 1 1 1 0 1 [t5 , t6]
m7 1.00 0 1 1 1 0 1 [t6 , t7]
m8 1.00 1 1 0 0 1 1 [t7 , t8]
m9 1.00 0 1 1 0 1 1 [t8 , t9]
m10 1.00 1 0 1 1 1 0 [t9 , t10]
m11 1.00 0 1 1 1 1 1 [t10 , t11]
m12 1.05 0 1 1 1 1 1 [t11 , t12]
m13 1.05 1 1 1 0 1 1 [t12 , t13]
m14 1.05 1 1 1 1 1 0 [t13 , t14]
m15 1.05 1 1 1 1 1 1 [t14 , t15]
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total number of equations is 258 and the total number of
unknowns is 246. Thus, the degrees of freedom in redundant
measurements is v = 258− 246 = 12.

Fig. 8 shows the feeder-head measurements for all the 24
load configurations in Tables II and IV. Problem (20) is solved
to obtain individual load parameters. Tables V and VI show
the load modeling error in percentage considering different
error levels in the feeder-head complex power measurement

TABLE IV
REDUNDANT LOAD CONFIGURATIONS FOR CASE STUDY IN SECTION V-C.

Configuration SW1 SW2 SW3 SW4 SW5 SW6 Time
m13 Additional 1 0 1 0 0 0 [t12 , t13]
m14 Additional 0 0 1 0 0 1 [t13 , t14]
m15 Additional 0 1 1 0 1 0 [t14 , t15]
m16 Additional 1 1 0 1 0 0 [t15 , t16]
m17 Additional 1 1 0 1 1 0 [t16 , t17]
m18 Additional 0 0 1 1 1 1 [t17 , t18]
m19 Additional 1 0 1 1 1 1 [t18 , t19]
m20 Additional 1 1 0 1 1 1 [t19 , t20]
m21 Duplicate 1 0 1 1 1 0 [t20 , t21]
m22 Duplicate 0 1 1 1 1 1 [t21 , t22]
m23 Upstream 1 1 1 0 1 1 [t22 , t23]
m24 Upstream 1 1 1 1 1 1 [t23 , t24]
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Fig. 8. Feeder-head measurements for the test case in Section V-C: (a) voltage
magnitude; (b) voltage angle; (c) active power; (d) reactive power.

TABLE V
LOAD MODELING ESTIMATION ERROR IN PERCENTAGE CONSIDERING

ERROR IN COMPLEX POWER MEASUREMENT IN FEEDER-HEAD.

Error 0.5% 1.0% 1.5% 2.0% 2.5% 3.0%
np 0.2317 0.4532 0.6446 0.8260 1.0638 1.2589
nq 0.6991 1.3915 2.1482 2.5407 3.4625 4.0320

and voltage measurement, respectively. We see that, even in
the presence of errors in measurements, the results demonstrate
an overall satisfactory performance in load model estimation.

D. Impact of Error in Line Impedance

In this section, we investigate how the error in our knowl-
edge about line impedances may affect the performance of
the load modeling method. We use the Monte Carlo method
to generate different scenarios for different levels of error
in line impedances. The test setup is similar to Case II in
Section V-A. Similar to Section V-C, we consider redundant
load configurations, as in Tables II and IV. Again, the total
number of equations is 258 and the total number of unknowns
is 246. Accordingly, the degrees of freedom in the redundant
measurements is v = 258 − 246 = 12. The results are
shown in Table VII. We see that, even in the presence of
some considerable errors in line impedances, the proposed
load modeling algorithm can achieve an overall satisfactory
performance in estimating the load modeling parameters.

E. Identifying Erroneous Switch Status

TABLE VI
LOAD MODELING ESTIMATION ERROR IN PERCENTAGE CONSIDERING

ERROR IN VOLTAGE MEASUREMENT IN FEEDER-HEAD.

Error 0.5% 1.0% 1.5% 2.0% 2.5% 3.0%
np 0.4157 0.8201 1.2472 1.6862 2.1178 2.5517
nq 1.3830 2.7107 4.0166 5.4983 6.9226 8.3686

TABLE VII
IMPACT OF ERROR IN OUR KNOWLEDGE ABOUT LINE IMPEDANCES.

Error in Line Impedance 5% 10% 15% 20% 25% 30%
Error in Estimating np 0.09 0.93 1.30 1.98 2.54 3.38
Error in Estimating nq 0.78 1.95 3.23 5.34 9.16 11.87
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Fig. 9. Bad data identification based on the LNR test in two load configura-
tions: (a) the first incorrect switch status data; (b) the second incorrect switch
status data.

In this section, we examine the effectiveness of the proposed
bad data detection and identification method to remove load
configuration measurements with erroneous switch status. We
use the Monte Carlo method to generate different scenarios
with erroneous switch status for Case II, where the redundant
load configurations are as in Tables II and IV. The Chi-squares
test in (24) is performed by assuming v and α to be 12 and
0.005, respectively. The bad data detection method is able to
detect erroneous switch status with 100% accuracy.

Next, we apply the LNR test to the residues to identify
the load configuration measurements with erroneous switch
status. We did so only for the residues of the Load Model
equations; because the residues of the Circuit Model equations
depend only on one load configuration. The load configuration
measurements with erroneous switch status are then dropped.
Afterwards, the load modeling is done on the remaining load
configurations, and the Chi-squares test is applied again. If
the Chi-squares test detects more bad data, then LNR test is
applied again. This procedure continues until there is no outlier
residue.

Fig. 9(a) shows the normalized residues in the presence of
erroneous load configurations 20 and 22. Equation number
138 has the largest residue in this case. This equation corre-
sponds to the Circuit Model in load configuration 20. Once
the measurements for this load configuration are dropped,
the normalized residues appear as in Fig. 9(b). The largest
residue corresponds to equation 151, which corresponds to
load configuration 22. Once the measurements for this load
configuration are also dropped, then the remaining load con-
figuration measurements will result in obtaining accurate load
models.

F. Tracking Time-Varying Load Models

In this section, we examine the effectiveness of the proposed
method in Section IV-E to track time-varying load modeling
parameters. The test setup is similar to Case II. Load modeling
is done based on the measurements from the most recent
c = 18 load configurations. The degree of freedom in redun-
dant measurements is v = 6. In total, suppose k = 1, . . . , 42
load configurations occur. At load configuration number 19,
the parameter of the load at bus 2 changes from np2 = 0.8 to
np2 = 1.8. Fig. 10(a) shows the number of load configurations
at each measurement point. Color black denotes the number of
load configurations that occurred before the change in the load,
while color red denotes the number of load configurations
that occured after the change in the load. The purpose of
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such color-coded distinction is to demonstrate the transition in
the load modeling process from the measurement points that
correspond to the old load model to the measurement points
that correspond to the new load model.

Fig. 10(b) shows the true and estimated np2 . In Stage I, the
estimated load model is accurate up until the moment when
the load changes. In Stage II, the majority of the available
measured load configurations correspond to the case before
the change in the load. Therefore, either they do not trigger
an update in the estimated load parameter, or the update in the
estimated load parameter is not accepted due to a spike in the
residues. In Stage III, the situation is reversed, and the majority
of the available measured load configurations correspond to
the case after the change in the load. Therefore, the estimated
load parameter is updated until it gradually approaches the
new true load parameter. In Stage IV, the available measured
load configurations are sufficient to achieve accurate load
modeling. Finally, in Stage V, the load modeling procedure
is back to its initial stage where all the available measured
load configurations correspond to the same load model.

G. Load Modeling in Presence of DERs

In this section, we examine the effectiveness of the proposed
load modeling method in presence of DERs. The test setup
is similar to Case II in Section V-A, where it is assumed
that a PV unit is connected to bus number 6 through a line
with 1.5+ j0.5 ohms. The nominal active power and reactive
power of the PV unit are 300 kW and -15 kVAR, respectively.
Thus, the renewable energy penetration in this test setup is
32%. In this study, we assume that the output power of the
PV unit is either directly measured or estimated, while the
voltage phasor of the PV unit is estimated as an unknown
in the load modeling estimation. Similar to Section V-C, we
consider redundant load configurations, as in Tables II and IV.

TABLE VIII
IMPACT OF ERROR IN MEASURING OR ESTIMATING PV OUTPUT.

Error in PV Unit 0.5% 1.0% 1.5% 2.0% 2.5% 3.0%
Error in Estimating np 0.28 0.48 0.69 0.85 1.11 1.29
Error in Estimating nq 0.75 1.42 2.29 2.73 3.80 4.45

It is assumed that the output power of the PV unit changes
during these load configurations, with possible turn off events.

First, the load modeling is conducted under the assumption
that the output power of the PV unit is measured accurately.
As expected, the error in individual load modeling is less than
0.01%. Next, we use the Monte Carlo method to generate
different scenarios for different levels of error in measuring
or forecasting the output power of the PV unit. The results
are shown in Table VIII. We see that, even in the presence
of imperfect knowledge on output power of the PV unit, the
results demonstrate an overall satisfactory performance in load
modeling.

H. Sequential Load Modeling on IEEE 33-bus Test System

The detailed data for the IEEE 33-bus test feeder is available
in [46]. We modified this feeder by adding one virtual infinite
bus with line impedance 0.5+j0.25 Ohms to the first bus of
the feeder. We consider the first bus as measuring bus, which
has no load. Thus, we aim to find load models for n = 32
buses. There are 232 − 1 possible load configurations for this
feeder. From Theorem 2, only 64 distinct load configurations
that satisfy (9) are needed to obtain the individual load models.

Figs. 11(a)-(c) show the measured voltage, active power, and
reactive power at the substation. We apply the sequential load
modeling method from Section IV-B to ĉ load configurations
that hold (9) for n̂ buses, where ĉmin = 2n̂, to obtain the load
models for n̂ buses. Fig. 11(d) shows number of load models
that are complete. Load modeling starts at time t1 as soon as
sufficient load configuration measurements become available.

Fig. 11(e) shows the computation time to run the load mod-
eling algorithm. The computation time at each step depends
on the number of equations and the number of unknowns in
that step, and these numbers themselves depend on the new
load configuration that occurs and measured at each step. For
example, in the first execution of the algorithm at time t1,
the number of equations and unknowns are both 116; and the
computation time is 62 seconds. As another example, in the
second execution of the algorithm at time t2, the number of
equations and unknowns are both 23, and the computation
time is 45 seconds. The total computation time across all
steps to finish modeling all individual loads in this IEEE 33-
bus test case is 38 minutes. This is the summation of the
computation times across all 18 steps. That means, on average,
each execution takes about two minutes.

I. Using Multiple Sensors on IEEE 123-bus Test System

In this section, we examine the effectiveness of the proposed
load modeling method on the IEEE 123-bus test system, shown
in Fig. 12. The detailed data for the IEEE 123-bus test feeder
is available in [47]. We assume that five micro-PMUs are
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Fig. 11. Sequential load modeling for the IEEE 33-bus test feeder: (a) feeder-
head voltage magnitude; (b) feeder-head active power; (c) feeder-head reactive
power; (d) number of modeled load; (e) computation time of each sequence.

deployed on the test feeder. This results in breaking down
the load modeling problem into five zones, as shown in Fig.
12 by using different colors. Zone 1 includes the buses in
downstream of sensor M1 and upstream of sensors M2, M4,
and M5. Zone 2 includes the buses between sensors M2 and
M3. Finally, Zones 3, 4, and 5 include the buses in downstream
of sensors M3, M4, and M5, respectively.

Recall from Section IV-F that each zone is essentially a
separate load modeling problem. For instance, consider Zone
1 whose lines and buses are shown in black. This zone has 29
buses, out of which 19 buses are single phase. Thus, there exist
51 voltage phasors as unknowns in each load configuration.
This zone also includes 21 single-phase loads. Note that, the
load for the rest of the network is directly measured using
sensors M2, M4, and M5. From Theorem 2, the minimum
number of distinct load configurations in order to estimate
individual load model parameters for the loads in this zone is
42, i.e., twice the number of the loads in this zone. Here, we
consider that 8 out of the 21 loads in Zone 1 are switched
on during every load configuration. Thus, the Circuit Model
includes 42×(53+1) = 2, 268 equations and 42×53+8×42 =
2, 562 unknowns, see (5) and (6). The Load Model adds 315
additional equations and 21 new unknowns, see (10) and (11).

The combined system of nonlinear equations for load mod-
eling in Zone 1 has 2,583 equations and unknowns. This
number is 1,962 for Zone 2, 2070 for Zone 3, 456 for Zone
4, and 3,870 for Zone 5. To compare these numbers with
the case when there is only one sensor installed, i.e., when
sensors M2, M3, M4, and M5 are not available, the combined
system of nonlinear equations has 47,405 equations and 47,405
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Fig. 12. Multiple sensor installations on the IEEE 123-bus test system.

unknowns. Therefore, as expected, installing additional sensors
can break down the load modeling problem into smaller prob-
lems, which accordingly reduces the computational complexity
of the load modeling problem. Importantly, the resulting
load modeling accuracy in each zone was 99.9% or more,
demonstrating a very accurate load modeling performance.
The computation-time of running Algorithm 1 on Zones 1,
2, 3, 4, and 5 was 31, 19, 21, 4, and 42 minutes, respectively.

VI. CONCLUSIONS

A new method was proposed for individual load modeling
in power distribution systems. It works by analyzing the
measurements at the feeder-head during load switching events
as they occur across the feeder. The basic idea is that, once
a load is switched, the switching event changes the voltage
for the rest of the loads, which causes variation in their
active and reactive power consumption; thus allowing us to
estimate their load parameters. The proposed method can
estimate load modeling parameters of individual loads. There-
fore, it can support various practical use cases at distribution
level, such as distribution-system optimal power flow analysis,
DER management, Volt-VAR control, and voltage stability.
Of course, if needed, the obtained individual load models
can be aggregated to also provide a feeder-aggregated load
model. A theoretical foundation was provided to determine the
conditions for successful load modeling. The proposed load
modeling can be done sequentially to model a subset of loads
while more measurements become gradually available. The
proposed method is extended to support also estimating the
parameters for time-varying individual loads. The proposed
method is extended also to utilize different types of redun-
dancy in measurements to improve load modeling accuracy.
Further, a residue-based bad data detection and identification
method was developed to identify and drop load configuration
measurements with erroneous switching status; thus to ensure
the accuracy of the load models. Several test cases, including
the IEEE 33-bus test feeder and IEEE 123-bus test feeder are
studied to assess the performance of the proposed method.
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