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Abstract—Distributed algorithms provide many benefits
over centralized algorithms for resource allocation prob-
lems in many important cyber-physical systems. However,
the distributed nature of these algorithms often makes the
systems susceptible to man-in-the-middle attacks, especially
when messages are transmitted between price-taking agents
and central coordinator. We propose a resilient strategy
for distributed algorithms under the framework of primal-
dual distributed optimization. We formulate a robust opti-
mization model that accounts for Byzantine attacks on the
communication channels between agents and coordinator.
We propose a resilient primal-dual algorithm using state-of-
the-art robust statistics methods. The proposed algorithm
is shown to converge to a neighborhood of the robust
optimization model, where the neighborhood’s radius is
proportional to the fraction of attacked channels.

I. INTRODUCTION

Consider the following multi-agent optimization problem
involving the average of parameters in the constraints:

min
θi∈Rd,∀i

U(θ) := 1
N

∑N
i=1 Ui(θi)

s.t. gt

(
1
N

∑N
i=1 θi

)
≤ 0, t = 1, ..., T,

θi ∈ Ci, i = 1, ..., N,

(1)

where both Ui : Rd → R and gt : Rd → R are
continuously differentiable, convex functions, and Ci is a
compact convex set in Rd. We let 0 ∈ Ci and

max
θ,θ′∈Ci

‖θ − θ′‖ ≤ R, i = 1, ..., N, (2)

such that R is an upper bound on the diameters of Ci.

Problem (1) arises in many resource allocation problems
with a set of potentially nonlinear constraints on the
amount of allowable resources, see Section I-A for a
detailed exploration.

We consider a system where there exists a central
coordinator and N agents. In this context, the function
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Ui(θi) and parameter θi are the utility of the ith agent
and the resource controlled by agent i, respectively.
As the agents work independently, it is desirable to
design algorithms that allow the N agents to solve (1)
cooperatively through communication with the central
coordinator. Among others, the primal-dual optimization
method [1] has been advocated as it naturally gives
rise to an algorithm that is decomposable and favors
distributed implementation [2]. In addition to their prac-
tical success, these methods are supported by strong
theoretical guarantees where fast convergence to an
optimal solution of (1) is well established. However,
the distributed nature of these methods also exposes
the system to a vulnerability not faced by the traditional
centralized systems. Precisely, existing algorithms assume
the agents, and the communication links between central
server and agents, to be completely trustworthy. With the
increasing levels of cyber attacks, an attacker can take
over the sub-system operated by agents, or deliberately
edit the messages in these communication links, i.e., a
Byzantine attack. This results in an unstable system and
causing damages to hardware.

In this paper, we propose strategies for securing the
primal-dual distributed algorithm, e.g., in [1], tailored
to solving a relaxed version of the resource allocation
problem (1). A key observation is that the considered
algorithm relies on reliably computing the average of
the set of parameter vectors, {θi}Ni=1, transmitted by the
agents. As a remedy, we apply robust statistics techniques
as a subroutine in the algorithm, therefore proposing a
resilient distributed algorithm that is proven to converge
to a neighborhood of the optimal solution of a robustified
version of (1).

The vulnerability with various types of distributed algo-
rithms has been identified and addressed in a number of
recent studies. Relevant examples are [3]–[7] which study
secure decentralized algorithms on a general network
topology but consider consensus-based optimization mod-
els. Moreover, [8]–[10] consider a similar optimization
architecture as this paper, yet they focus on securing
distributed algorithms for machine learning tasks which
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assumes i.i.d. functions, a fundamentally different setting
from the current paper. Our work is also related to the
literature on robust statistics [11], [12], and particularly,
with the recently rekindled research efforts on high
dimensional robust statistics [13]–[15]. These works will
be the working horse for our attack resilient algorithm.

Our contributions and organization are as follows. First,
we derive a formal model for attack resilient resource
allocation via a conservative approximation for the
robust optimization problem [cf. Section III]. Second,
we apply and derive new robust estimation results to
secure distributed resource allocation algorithms [cf. Sec-
tion IV]. Third, we provide a non-asymptotic convergence
guarantee of the proposed attack resilient algorithm
[cf. Section IV-A]. In particular, our algorithm is shown to
converge to a O(α2) neighborhood to the optimal solution
of (1), where α ∈ [0, 1

2 ) is the fraction of attacked links.
The omitted proofs can be found in an online appendix
[https://arxiv.org/abs/1904.02638].

Notations. Unless otherwise specified, ‖ · ‖ denotes the
standard Euclidean norm. For any N ∈ N, [N ] denotes
the finite set {1, ..., N}.

A. Motivating Examples

Our set-up here can be employed in a wide range of opti-
mization problems for resource allocation and networked
control in multi-agent systems, e.g., in the pioneering
example of congestion control in data networks [16],
[17]; in determining the optimal price of electricity and
enabling more efficient demand supply balancing (a.k.a.
demand response) in smart power distribution systems
[18], [19]; in managing user transmit powers and data
rates in wireless cellular networks [20]; in determining
optimal caching policies by content delivery networks
[21]; in optimizing power consumption in wireless sensor
networks with energy-restricted batteries [22], [23]; and
in designing congestion control systems in urban traffic
networks [24]. These examples would have different
utility functions and constraint sets that can be handled
through our general formulation in (1). For example, in
the power/rate control problem in data networks, the cost
functions are usually logarithmic functions associated
with rate θi, e.g., Ui(θi) = −βi log(θi). In demand
response applications in power distribution systems,
the utilities capture the users’ benefits from operating
their electric appliances under different settings. For
example, we can capture the cost function of temperature
θi controlled by a price-responsive air conditioner as
Ui(θi) = bi(θi−θcomf)

2−ci [19]. In terms of constraints,
our general nonlinear constraint formulation can not only

capture common linear resource constraints such as link
capacity in data networks [16], [17], but can also handle
important non-linear constraints arising in many different
applications. For example, in radial power distribution
systems, nonlinear convexified power flow constraints can
be included for distributed demand response optimization
(to see a description of distribution system power flow
constraints, see, e.g., [25], [26]). This can enable our
algorithm to perform demand supply balancing in power
disribution systems in a distributed and resilient fashion.

II. PRIMAL-DUAL ALGORITHM FOR RESOURCE
ALLOCATION

This section reviews the basic primal dual algorithm for
resource allocation. Let λ ∈ RT+ be the dual variable. We
consider the Lagrangian function of (1):

L({θi}Ni=1;λ) :=
1

N

N∑
i=1

Ui(θi) +

T∑
t=1

λt gt

( 1

N

N∑
i=1

θi

)
.

Assuming strong duality holds (e.g., under the Slater’s
condition), solving problem (1) is equivalent to solving
its dual problem:

max
λ∈RT+

min
θi∈Ci,∀i

L({θi}Ni=1;λ). (P)

For a given λ, the inner minimization of (P) is known as
the Lagrangian relaxation of (1), which can be interpreted
as a penalized resource allocation problem [19].

In a distributed setting, the goal is to solve (1) where
the agents only observe a pricing signal received from
the central coordinator, and this pricing signal is to be
updated iteratively at the central coordinator. As suggested
in [1], we apply the primal dual algorithm (PDA) to a
regularized version of (P). Let us define

Lυ({θi}Ni=1;λ) :=

L({θi}Ni=1;λ) + υ
2N

∑N
i=1 ‖θi‖2 −

υ
2 ‖λ‖

2,
(3)

such that Lυ(·) is υ-strongly convex and υ-strongly
concave in {θi}Ni=1 and λ, respectively. Let k ∈ Z+

be the iteration index, γ > 0 be the step sizes, the PDA
recursion is described by:

θ
(k+1)
i = (4a)

PCi
(
θ

(k)
i − γ∇θiLυ({θ(k)

i }
N
i=1;λ(k))

)
,∀ i ∈ [N ]

λ(k+1) =
[
λ(k) + γ∇λLυ({θ(k)

i }
N
i=1;λ(k))

]
+

(4b)

where PCi(·) is the Euclidean projection operator, [·]+
denotes max{0, ·}, and the gradients are:

∇θiLυ({θ(k)
i }

N
i=1;λ(k)) = 1

N

(
∇θiUi(θ

(k)
i ) + υ θ

(k)
i

+
∑T
t=1 λ

(k)
t ∇θgt(θ)

∣∣∣
θ= 1

N

∑N
i=1 θ

(k)
i

)
, (5)
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Algorithm 1 PD-DRA Procedure.
1: for k = 1, 2, ... do
2: (Message exchanges stage):

(a) Central coordinator receives {θ(k)
i }Ni=1 from

agents and computes θ
(k)

, {∇θgt(θ
(k)

)}Tt=1.
(b) Central coordinator broadcasts the vectors

θ
(k)

, g(k) :=
∑T
t=1 λ

(k)
t ∇θgt(θ

(k)
) to

agents.
3: (Computation stage):

(a) Agent i computes the update for θ(k+1)
i

according to (4a) using the received θ
(k)

.
(b) The central coordinator computes the update

for λ(k+1) according to (4b).
4: end for

[
∇λLυ({θ(k)

i }
N
i=1;λ(k))

]
t

= gt

(
1
N

∑N
i=1θ

(k)
i

)
− υ λ(k)

t ,

(6)

for all i, t. We denoted [x]t as the tth element of x ∈
RT . In particular, observe that (4) performs a projected
gradient descent/ascent on the primal/dual variables.

From the above, both gradients with respect to (w.r.t.)
θi and λt depend only on the average parameter
θ

(k)
:= 1

N

∑N
i=1 θ

(k)
i . We summarize the primal dual

distributed resource allocation (PD-DRA) procedure in
Algorithm 1. In addition to solving the general problem
(1), Algorithm 1 also serves as a general solution method
to popular resource allocation problems [19].

As the regularized primal-dual problem is strongly
convex/concave in primal/dual variables, Algorithm 1
converges linearly to an optimal solution [1]. To study
this, let us denote z(k) = ({θ(k)

i }Ni=1,λ
(k)) as the primal-

dual variable at the kth iteration,

Φ(z(k)) :=

(
∇θLυ({θ(k)

i }Ni=1,λ
(k))

∇λLυ({θ(k)
i }Ni=1,λ

(k))

)
. (7)

Fact 1. [1, Theorem 3.5] Assume that the map Φ(z(k))
is LΦ Lipschitz continuous. For all k ≥ 1, we have

‖z(k+1)−z?‖2 ≤ (1−2γυ+γ2L2
Φ)‖z(k)−z?‖2 , (8)

where z? is a saddle point to the regularized version
of (P). Set γ = υ/L2

Φ gives ‖z(k+1) − z?‖2 ≤
(
1 −

υ2/L2
Φ

)
‖z(k) − z?‖2, ∀ k ≥ 1.

III. PROBLEM FORMULATION

Despite the simplicity and the strong theoretical guarantee,
the PD-DRA method is susceptible to attacks on the
channels between the central coordinator and the agents,
as described below.

...

Central Coordinator

Agent i Agent j

get g(k)

send θ(k)
i

Attacked!

Fig. 1. Illustrating the PD-DRA algorithm under attack. The uplink for
agent j is compromised such that the correct θ(k)

j is not transmitted to
the central node. The up/downlink for agent i are operating properly.

Attack Model. We consider a situation when uplink
channels between agents and the central coordinator
are compromised [see Fig. 1]. Let A ⊂ [N ] be the
set of compromised uplink channels, whose identities
are unknown to the central coordinator. We define
H := [N ] \ A as the set of trustworthy channels. At
iteration k, instead of receiving θ(k)

i from each agent
i ∈ [N ] [cf. Step 2(a)], the central coordinator receives
the following messages:

r
(k)
i =

{
θ

(k)
i , if i ∈ H,
b

(k)
i , if i ∈ A.

(9)

We focus on a Byzantine attack scenario such that the
messages, b(k)

i , communicated on the attacked channels
can be arbitrary. Under such scenario, if the central coor-
dinator forms the naive average θ̂(k) = 1/N

∑N
i=1 r

(k)
i

and computes the gradients ∇gt(θ̂(k)) accordingly, this
may result in uncontrollable error since the deviation
θ̂(k) − (1/N)

∑N
i=1 θ

(k)
i can be arbitrarily large. It is

anticipated that the PD-DRA method would not provide
a solution to the regularized version of (P).

Robust Optimization Model. In light of the Byzantine
attack, it is impossible to optimize the original problem
(P) since the contribution from Ui(·), i ∈ A becomes
unknown to the central coordinator. As a compromise,
we focus on optimizing the cost function of agents with
trustworthy uplinks and the following robust optimization
problem as our target model:

min
θi∈Ci,i∈H

1
|H|
∑
i∈H Ui(θi) (10a)

s.t. max
θj∈Cj ,j∈A

gt

(
1
N

∑N
i=1 θi

)
≤ 0, ∀ t, (10b)

note that {θj}j∈A is taken away from the decision
variables and we have included (10b) to account for
the worst case scenario for the resource usage of the
agents with compromised uplinks. This is to ensure that
the physical operation limit of the system will not be
violated under attack. Consider the following assumption
which will be assumed throughout the paper:
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H1. For all θ ∈ Rd, the gradient of gt is bounded with
‖∇gt(θ)‖ ≤ B and is L-Lipschitz continuous.

We define
gt(θ) := gt(θ) + |A|

N

(
RB + 1

2LR
2
)
, (11)

Lemma 1. Under H1. The following problem yields a
conservative approximation of (10), i.e., its feasible set
is a subset of the feasible set of (10):

min
θi∈Ci,i∈H

1
|H|
∑
i∈H Ui(θi)

s.t. gt
(

1
N

∑
i∈H θi

)
≤ 0, ∀ t ∈ [T ],

(12)

Similar to PD-DRA, we define the regularized Lagrangian
function of (12) as:

Lυ({θi}i∈H;λ;H)

:= 1
|H|
∑
i∈HUi(θi) +

∑T
t=1λt gt

(
1
N

∑
i∈H θi

)
+ υ

2|H|
∑
i∈H ‖θi‖2 −

υ
2 ‖λ‖

2.

(13)

Again, the regularized Lagrangian function is υ-strongly
convex and concave in θ and λ, respectively.

Our main task is to tackle the following modified problem
of (P) under Byzantine attack on (some of) the uplinks:

max
λ∈RT+

min
θi∈Ci,∀i∈H

Lυ({θi}i∈H;λ;H), (P’)

and we let ẑ? = (θ̂?, λ̂?) be the optimal solution to
(P’). Notice that (P’) bears a similar form as (P) and
thus one may apply the PD-DRA method to the former
naturally. However, such application requires the central
coordinator to compute the sample average

θ
(k)

H := 1
|H|
∑
i∈H θ

(k)
i , (14)

at each iteration. However, the above might not be
computationally feasible under the attack model, since
the central coordinator is oblivious to the identity of H.
This is the main objective in the design of our scheme.

IV. ROBUST DISTRIBUTED RESOURCE ALLOCATION

In this section, we describe two estimators for approximat-
ing θ

(k)

H [cf. (14)] from the received messages (9) without
knowing the identity of links in H. To simplify notations,
we define α ≥ |A|/N as a known upper bound to the
fraction of compromised channels and assume α < 1/2
where less than half of the channels are compromised.

As discussed after (14), the problem at hand is robust
mean estimation, whose applications to robust distributed
optimization has been considered in the machine learning
literature [9], [10], [14] under the assumption that the

‘trustworthy’ signals are drawn i.i.d. from a Gaussian
distribution. Our setting is different since the signals θ(k)

i ,
i ∈ H are variables from the previous iteration whose
distribution is non-Gaussian in general. Our analysis will
be developed without such assumption on the distribution.

We first consider a simple median-based estimator ap-
plied to each coordinate j = 1, ..., d. First, define the
coordinate-wise median as:[

θ
(k)
med

]
j

= med
(
{[r(k)

i ]j}Ni=1

)
, (15)

where med(·) computes the median of the operand. Then,
our estimator is computed as the mean of the nearest
(1 − α)N neighbors of

[
θ

(k)
med

]
j
. To formally describe

this, let us define:

N (k)
j = {i ∈ [N ] :

∣∣[r(k)
i − θ

(k)
med

]
j

∣∣ ≤ r(k)
j }, (16)

where r(k)
j is chosen as |N (k)

j | = (1−α)N . Our estimator
is:

[θ̂
(k)
H ]j = 1

(1−α)N

∑
i∈N (k)

j
[r

(k)
i ]j . (17)

The following bounds the performance of (17).

Proposition 1. Suppose that maxi∈H
∥∥θ(k)

i −θ
(k)

H
∥∥
∞ ≤

r, then for any α ∈ (0, 1
2 ), it holds that

∥∥θ̂(k)
H − θ

(k)

H
∥∥ ≤ α

1− α

(
2 +

√
(1− α)2

1− 2α

)
r
√
d . (18)

Under mild assumptions, the condition maxi∈H
∥∥θ(k)

i −
θ

(k)

H
∥∥
∞ ≤ r can be satisfied with r = Θ(R), as

implied by the compactness of Ci [cf. (2)]. Moreover, for
sufficiently small α, the right hand side on (18) can be
approximated by O(αR

√
d). However, this median-based

estimator may perform poorly for large α (especially
when α → 1

2 ) or dimension d. For these situations, a
more sophisticated estimator is required, as detailed next.

To derive the second estimator, we apply an auxiliary re-
sult from [15] which provides an algorithm for estimating
θ

(k)

H , as summarized in Algorithm 2. We observe:

Proposition 2. [15, Proposition 16] Suppose that
λmax( 1

|H|
∑
i∈H(θ

(k)
i − θ

(k)

H )(θ
(k)
i − θ

(k)

H )>) ≤ σ2. For
any α ∈ [0, 1

4 ), Algorithm 2 produces an output such

that ‖θ(k)

H − θ̂
(k)
H ‖ = O(σ

√
α).

Again, similar to Proposition 1, the required condition
above can be satisfied with σ = Θ(R) under mild
conditions. Thus, Proposition 2 states that Algorithm 2
recovers θ

(k)

H up to an error of O(
√
αR). Note that this
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Algorithm 2 Recovering the mean of a set [15].

1: Input: α, θ(k)
i , ci = 1 for all i = 1, . . . , N , and

B = {1, . . . , N}.
2: Set XB = [· · ·θ(k)

j · · · ]> for j ∈ B as the concate-
nated data matrix.

3: Let Y ∈ Rd×d and W ∈ RB×B be the maxi-
mizer/minimizer of the saddle point problem

max
Y�0,

tr(Y )≤1

min
0≤Wij ,

Wij≤ 4−α
α(2+α)n

,∑
j Wji=1

∑
i∈B

ci(θ
(k)
i −XBwi)

>Y (θ
(k)
i −XBwi)

4: Let τ∗i = (θ
(k)
i −XBwi)>Y (θ

(k)
i −XBwi).

5: if
∑
i∈B ciτ

∗
i > 4nσ2 then

6: For i ∈ B, replace ci with
(
1− τ∗i

maxj∈B τ∗j

)
ci.

7: For all i with ci < 1
2 , remove from B.

8: Go back to Line 3.
9: end if

10: Set W1 as the result of zeroing out all singular values
of W that are greater than 0.9.

11: Set Z = XBW0 where W0 = (W−W1)(I−W1)-1.
12: if rank(Z) = 1 then
13: Output: θ̂(k)

H as average of the columns of XB.
14: else
15: Output: θ̂(k)

H as a column of Z at random.
16: end if

bound is dimension free unlike the median estimator
analyzed in Proposition 1.

The idea behind Algorithm 2 is to sequentially identify
and remove the subset of points that cannot be re-
constructed from the mean of the data points. The solution
of the optimization problem in Line 3 measures how well
can we recover the data points as an average of the other
|H| points. The bounded sample variance assumption
guarantees that one can re-construct any element in the
set H from its mean, thus, all such points that introduce
a large error, as quantified by ci can be safely removed.
Line 5 quantifies the magnitude of the optimal point
of Line 3, and if such value is large, such points that
introduce a large error are down-weighted. The process
is repeated until the optimal solution of Line 3 is small
enough and a low rank approximation of the optimal W
can be used to return the sample mean estimate.

Attack Resilient PD-DRA method. The above section
provides the enabling tool for developing the resilient
PD-DRA method, which we summarize in Algorithm 3.
The algorithm behaves similarly as Algorithm 1 applied
to (P’), with the exception that the central coordinator is
oblivious to H, and it uses a robust mean estimator to

Algorithm 3 Resilient PD-DRA

1: Input: Each agent has initial state θ(0)
i .

2: for k = 1, 2, ... do
3: (At the Central Coordinator):

(a) Receives {r(k)
i }Ni=1, see (9), from agents.

(b) Computes robust mean θ̂(k)
H using the estima-

tor (17) or Algorithm 2.
(c) Broadcasts the vectors θ̂(k)

H and ĝ
(k)
H :=∑T

t=1 λ
(k)
t ∇θgt(θ̂

(k)
H ) to agents.

(d) Computes the update for λ(k+1) with (20).
4: (At each agent i):

(a) Agent receives θ̂(k)
H and ĝ(k)

H .
(b) Agent computes update for θ(k+1)

i with (19).
5: end for

find an approximate average for the signals sent through
the trustworthy links. This approximate value is used to
compute the new price signals, and sent back to agents.
In particular, the primal-dual updates are described by

θ
(k+1)
i = PCi

(
θ

(k)
i −

γ
N

(
ĝ

(k)
H +∇Ui(θ(k)

i )+υθ
(k)
i

))
, (19)

λ
(k+1)
t =

[
λ

(k)
t + γ

(
gt(
|H|
N θ̂

(k)
H )− υλ(k)

t

)]
+
. (20)

Lemma 2. Algorithm 3 is a primal-dual algorithm [1]
for (P’) with perturbed gradients:

ĝ
(k)
θ = ∇θLυ(θ(k);λ(k);H) + e

(k)
θ , (21a)

ĝ
(k)
λ = ∇λLυ(θ

(k)
i ;λ(k);H) + e

(k)
λ , (21b)

where we have used concatenated variable as θ =
(θ1, ...,θN ) and λ = (λ1, ..., λT ). Under H1 and
assuming that λ(k)

t ≤ λ for all k, we have:

‖e(k)
θ ‖ ≤ λLT‖θ̂

(k)
H − θ

(k)

H ‖, (22)

‖e(k)
λ ‖ ≤ BT‖θ̂

(k)
H − θ

(k)

H ‖. (23)

The assumption λ
(k)
t ≤ λ can be guaranteed since

gt(
|H|
N θ̂

(k)
H ) is bounded.

A. Convergence Analysis

Finally, based on Lemma 2, we can analyze the conver-
gence of Algorithm 3. Let ẑ? = (θ̂?, λ̂?) be a saddle
point of (P’) and define

Φ(z(k)) :=

(
∇θLυ({θ(k)

i }i∈H,λ(k);H)

−∇λLυ({θ(k)
i }i∈H,λ(k);H)

)
, (24)
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Theorem 1. Assume the map Φ(z(k)) is LΦ-Lipschitz
continuous. For Algorithm 3, for all k ≥ 0 it holds

‖z(k+1) − ẑ?‖2 ≤
(
1− γυ + 2γ2L2

Φ

)
‖z(k) − ẑ?‖2

+
(4γ

υ
+ 2γ2

)
Ek. (25)

where Ek := ‖e(k)
θ ‖2 + ‖e(k)

λ ‖2 is the total perturbation
at iteration k. Moreover, if we choose γ < υ/2L2

Φ and
Ek is upper bounded by E for all k, then

lim sup
k→∞

‖z(k) − ẑ?‖2 ≤
4
υ + 2γ

υ − 2γL2
Φ

E (26)

Combining the results from the last subsection, the
theorem shows the desired result that the resilient PD-
DRA method converges to a O(α2R2d) neighborhood
of the saddle point of (P’), if the median-based estimator
(17) is used [or O(αR2) if Algorithm 2 is used], where
α is the fraction of attacked uplink channels. Moreover,
it shows that the convergence rate to the neighborhood is
linear, which is similar to the classical PDA analysis [1].

Interestingly, Theorem 1 illustrates a trade-off in the
choice of the step size γ between convergence speed
and accuracy. In specific, (25) shows that the rate of
convergence factor 1− γυ + 2γ2L2

Φ can be minimized
by setting γ = υ/(4L2

Φ). However, in the meantime, the
asymptotic upper bound in (26) is increasing with γ and it
can be minimized by setting γ → 0. This will be a design
criterion to be explored in practical implementations.

V. CONCLUSIONS

In this paper, we studied the strategies for securing a
primal-dual algorithm for distributed resource allocation.
Particularly, we propose a resilient distributed algorithm
based on primal-dual optimization and robust statistics.
We derive bounds for the performance of the studied
algorithm and show that it converges to a neighborhood
of a robustified resource allocation problem when the
number of attacked channels is small.
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