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Decentralized Smart Grid: Motivation

o Future power grid is smart.

@ The cyber-physical system is inherently geometrically distributed and has
heterogeneous communications capability.
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Decentralized Smart Grid: Motivation

o Future power grid is smart.

@ The cyber-physical system is inherently geometrically distributed and has
heterogeneous communications capability.

:

Smart Grid

@ New energy management schemes need to be robust to network node and link
failures.
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Welfare Maximization for Generation/

@ The goal is to maximize the welfare at time ¢ for all generations and consumers.

@ The ideal solution to the welfare maximization problem should have the following
properties:

© Manages the demand side and the generation side simultaneously.

@ Performs simple local optimization at each iteration and exchanges information with
only neighbors.

© Privacy of information is guaranteed. No information about the utility/cost functions
should be disclosed.

@ Convergence to global optimum.

© The algorithm should be scalable for large networks.
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Problem Formulation

o We can formulate a constrained utility maximization problem:

Welfare maximization problem formulation
fgflgx ]%;7 Uj(d;) vezvcv(gv)
st. 17d = ng
di,min < di < dimax
0 < ¢i < gi,max

o The t'" entry of the vectors of demand and generation correspond to period ¢
(different times of the day).
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Dual Decomposition

@ Next, for simplicity, we focus on one single period.

o Let A= (3 ;. ;dj — > ,cp 9v) be the power mismatch.

Dual Decomposition

J=) Culge) = Y Uildy) +pA

vEY JjET
d¥ =arg  min  (Wd; - Ui(ds))

di,min <di <di max
ggk) = arg min  (Ci(d;) — p(k)gi)

0<9;<9i,max

pHHD = p®) 4 AR

UCSB Presentation - Ramtin Pedarsani UC-Lab Center for Distribution System Cybersecurity March 2019



Consensus Algorithm

@ Global parameters are A and price p that are not private.

@ In the consensus algorithm, each node can only share the global parameters with the
neighbors.

o W is the weight matrix that also determines the communication graph.

Distributed Estimation of Global Information

pe Ve AR AR 4 T (AR D AW) 4 g0 gr)
JEN;
Pe s AR AP £ T (AW - AD) _ g 4 g0+
JEN;
ieVud: pit =p + 37 wi; (0l — pi*) + nAl
JEN;
v
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Security of Consensus-Based Schemes

@ We consider the attack that the adversary jams the communication links.

@ The bandwidth on links will be significantly reduced. Can we solve the decentralized
optimization problem?

o Key idea is to use quantization!
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Decentralized Gradient Decent (DGD)
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Decentralized Gradient Decent (D

o Network G with n nodes, weight matrix W = [wij]nxn
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Decentralized Gradient Decent (DGD)

o Network G with n nodes, weight matrix W = [wi;]nxn
o At iteration ¢, node i:
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Decentralized Gradient Decent (D

o Network G with n nodes, weight matrix W = [wi;]nxn
o At iteration t, node i:
o sends x; ¢ to neighbors AV; and receives x; ¢

UCSB Presentation - Ramtin Pedarsani UC-Lab Center for Distribution System Cybersecurity March 2019



Decentralized Gradient Decent (DGD)

o Network G with n nodes, weight matrix W = [wi;]nxn
@ At iteration t, node i:
o sends x; ¢ to neighbors AV; and receives x; ¢
o updates
Xit+1 = Z Wi X4t _avfi(xi,t)
JEN;

local gradient descent

average of local
and neighboring models

UCSB Presentation - Ramtin Pedarsani UC-Lab Center for Distribution System Cybersecurity March 2019



Decentralized Gradient Decent (DGD)

o Network G with n nodes, weight matrix W = [wi;]nxn
o At iteration ¢, node i:

o sends

o updates

UCSB Presentation -

X;,¢ to neighbors \; and receives x; ¢
Xit+1 = E Wi X4t _avfi(xi,t)
; —_———
JEN;

local gradient descent

average of local
and neighboring models

[Nedi¢, Ozdaglar,'07]
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Decentralized Gradient Decent (DGD)

o Network G with n nodes, weight matrix W = [wi;]nxn
@ At iteration t, node i:
o sends x; ¢ to neighbors AV; and receives x; ¢
o updates
Xit+1 = Z Wi X4t _avfi(xi,t)
JEN;

local gradient descent

average of local
and neighboring models

[Nedi¢, Ozdaglar,'07]

Theorem (Yuan, Ling, Yin '16)

[e3

1-8

Under Al,2,3, x;,; geometrically converges to an O ( )—neighborhood of the unique

solution x*. (1 — /3 : spectral gap of W)
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Decentralized Gradient Decent (DGD)

o Network G with n nodes, weight matrix W = [wsj]nxn
@ At iteration ¢, node :

o sends x; ¢ to neighbors AV; and receives x; ¢
o updates
Xit+1 = E Wi X4t _avfi(xi,t)
; . —_———
JEN; local gradient descent

average of local
and neighboring models

[Nedi¢, Ozdaglar,'07]

Theorem (Yuan, Ling, Yin '16)

[e3

1-8

Under Al,2,3, x;,; geometrically converges to an O ( )—neighborhood of the unique

solution x*. (1 — /3 : spectral gap of W)

Related work in quantized setting: [Nedic et al., 2009], [Rabbat & Novak, 2005], [Li
et al., 2016], [Zhang et al., 2019]
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Decentralized Gradient Decent (DGD)

o Network G with n nodes, weight matrix W = [wi;]nxn
@ At iteration t, node i:
o sends x; ¢ to neighbors AV; and receives x; ¢
o updates
Xit+1 = Z Wi X4t _avfi(xi,t)
JEN;

local gradient descent

average of local
and neighboring models

[Nedi¢, Ozdaglar,'07]

Theorem (Yuan, Ling, Yin '16)

[e3

1-8

Under Al,2,3, x;,; geometrically converges to an O ( )—neighborhood of the unique

solution x*. (1 — /3 : spectral gap of W)

Related work in quantized setting: [Nedic et al., 2009], [Rabbat & Novak, 2005], [Li
et al., 2016], [Zhang et al., 2019]

No “EXACT" convergence!
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Assumptions

Al Local objectives f; are differentiable & L-smooth:
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Al Local objectives f; are differentiable & L-smooth:

IVfi(x) = VIl < Llx-yll  Vxy
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Al Local objectives f; are differentiable & L-smooth:

IVfi(x) = VIl < Llx-yll  Vxy

A2 Local objectives f; are u-strongly convex:
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Al Local objectives f; are differentiable & L-smooth:

IVfi(x) = VIl < Llx-yll  Vxy

A2 Local objectives f; are u-strongly convex:

(V) -V, x—y) > ulx—yl*  Vvxy
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Al Local objectives f; are differentiable & L-smooth:

IVfi(x) = VIl < Llx-yll  Vxy

A2 Local objectives f; are u-strongly convex:

(V) -V, x—y) > ulx—yl*  Vvxy

A3 Weight matrix W is non-negative doubly stochastic:
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Al Local objectives f; are differentiable & L-smooth:

IVfi(x) = VIl < Llx-yll  Vxy

A2 Local objectives f; are u-strongly convex:

(V) -V, x—y) > ulx—yl*  Vvxy

A3 Weight matrix W is non-negative doubly stochastic:

wi; >0 & W=W" & Wi1=1 & null(l—W)=span(1)
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Quantized-DGD

o Network G with n nodes, weight matrix W e R} ™"

@ At iteration ¢, node ¢:
o sends z; ; = Q(x;,+) to neighbors j € N; and receives z; ;
o updates
Xippr = (1 —edewi)xie+ € Y wiyziy —aeV fi(xi,¢)
noiseless local model JEN;\{i} local gradient descent

average of noisy neighboring models
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Quantized-DGD

o Network G with n nodes, weight matrix W e R} ™"

@ At iteration ¢, node ¢:

o sends z; ; = Q(x;,+) to neighbors j € N; and receives z; ;
o updates

Xippr = (1 —edewi)xie+ € Y wiyziy —aeV fi(xit)
noiseless local model JEN;\{i} local gradient descent

average of noisy neighboring models

Theorem (QDGD with variance-bounded quantization)

o A1,234 YV
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Quantized-DGD

o Network G with n nodes, weight matrix W e R} ™"

@ At iteration ¢, node ¢:

o sends z; ; = Q(x;,+) to neighbors j € N; and receives z; ;
o updates

Xippr = (1 —edewi)xie+ € Y wiyziy —aeV fi(xit)
noiseless local model JEN;\{i} local gradient descent

average of noisy neighboring models

Theorem (QDGD with variance-bounded quantization)

o Al 234 v
o fix 6 € (0,1) & large enough T
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Quantized-DGD

o Network G with n nodes, weight matrix W e R} ™"

@ At iteration ¢, node ¢:

o sends z; ; = Q(x;,+) to neighbors j € N; and receives z; ;
o updates

Xipr1 = (1 — e+ ewi)xi ¢ + € E Wi %t —0eV fi(x4,¢)
noiseless local model JEN;\{i} local gradient descent

average of noisy neighboring models

Theorem (QDGD with variance-bounded quantization)

o Al,234 vV
o fix 6 € (0,1) & large enough T
o pick e = A o= €2

P 7309 T
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o Network G with n nodes, weight matrix W e R} ™"

@ At iteration ¢, node ¢:
o sends z; ; = Q(x;,+) to neighbors j € N; and receives z; ;
o updates
Xipr1 = (1 — e+ ewi)xi ¢ + € Z Wi %t —0eV fi(x4,¢)
noiseless local model JEN;\{i} local gradient descent

average of noisy neighboring models

Theorem (QDGD with variance-bounded quantization)
e Al,234 v
o fix 6 € (0,1) & large enough T
H — Cc1 — c2
e pick e = T%u—a) , o= Ti(l—‘”
o then
«112 1,5—2+n02 VV*VVD2
£l - <] < o (L2 tn W =Wl
T 2
v
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Al Local objectives f; are differentiable & L-smooth:
IVfix) =V < Llx-yll  Vxy
A2 Local objectives f; are u-strongly convex:
(V) = Vi) x—y) 2ulx—ylI*  vxy
A3 Weight matrix W is non-negative doubly stochastic:

wi; >0 & W=W' & W1=1 & null(I—-W)=span(1)
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... Assumptions

A4 Random quantizer Q)(-) is unbiased & variance-bounded:
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A4 Random quantizer Q)(-) is unbiased & variance-bounded:

EQx)x=x & E[Qx) -x|*x] <o®  wx
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Proof Sketch |

@ To solve the main problem:

xERP

min  f(x) = fi(x)
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Proof Sketch |

@ To solve the main problem:

n
o 1= 31
im
@ Solve an equivalent:
n X1
min  F(x) = fi(xi)
xER"P ; T Where x = Dl eR™
s.t. X1 =" =Xp Xn
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Proof Sketch |

@ To solve the main problem:

min  f(x) = Zfi(x)

xERP

@ Solve an equivalent:

min  F(x) = fi(xs)
By A3: x€R"? ;

s.t. I—-W)"/2x =0

where W = W ® I, € R""*"P
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Proof Sketch |

@ To solve the main problem:

@ Solve an equivalent:

min  F(x) = fi(x:)
By A3: x€R"? ;

s.t. I—-W)"/2x =0

where W = W ® I, € R""*"P

@ Penalty function:

Define Ve : ha(x) = %XT (I-W)x+ aF(x)

March 2019
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Proof Sketch |

@ To solve the main problem:

@ Solve an equivalent:

min  F(x) = fi(x:)
By A3: x€R"? ;

s.t. I—-W)"/2x =0

where W = W ® I, € R""*"P

@ Penalty function:

Define Ve : ha(x) = %XT (I-W)x+ aF(x)

X, = argmin hq (x)
xERNP

March 2019
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Proof Sketch Il

/'.X>’<
O (7a=5772)

- Thm. 1
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Proof Sketch Il

Lemma 2

Lemma 1 © (T(17 02 )

O (retore) \.

Xi, T
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Proof Sketch Il

Lemma 1

O (rrksr)

&
X, T

Stochastic gradient descent on penalty function hq (x¢):
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Proof Sketch Il

X5
[}
Lemma 1
1
o (T(lﬂﬂ/?) L
X, T

Stochastic gradient descent on penalty function hq (x¢):

proposed update rule:  X;11 = x; — e( (I-Wp)xt+ (Wp — W)z, + aVF(xt))

Vha(xt) & E[Vha|=Vha
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Proof Sketch Il

X5
[}
Lemma 1
1
o (T(lﬂﬂ/?) L
X, T

Stochastic gradient descent on penalty function hq (x¢):

proposed update rule:  X;11 = x; — e( (I-Wp)xt+ (Wp — W)z, + aVF(xt))

Vha(xt) & E[Vha|=Vha

81110'2 ||VV—VVD||2 1
J1C2 T1-68)/2

=>E|:||XT7XZH2] < (9( ) Lemma 1 v
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Proof Sketch Il

.\ Lemma 2

O (Fa=w7z)

X

Gradient descent on penalty function hq (x¢):
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Proof Sketch Il

.\ Lemma 2

O (Fa=w7z)

X*

Gradient descent on penalty function hq (x¢):

U¢41 = U — 1- Vha(ut)
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Proof Sketch Il

.\ Lemma 2

O (Fa=w7z)

X*

Gradient descent on penalty function hq (x¢):

eyT(348) /4 I

Wi =ur — 1-Vhe(u) = ||uT—xZ§||2 <e —x;||2

UCSB Presentation - Ramtin Pedarsani UC-Lab Center for Distribution System Cybersecurity March 2019



Proof Sketch Il

.\ Lemma 2

O (Fa=w7z)

X*

Gradient descent on penalty function hq (x¢):

eyT(348) /4 I

Wi =ur — 1-Vhe(u) = ||uT—xZ§||2 <e —x;||2

U¢41 = Wut - onF(ut)
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Proof Sketch Il

*

Xa

.\ Lemma 2

O (Fa=w7z)

X*

Gradient descent on penalty function hq (x¢):

eyT(348) /4 I

Wi =ur — 1-Vhe(u) = ||uT—xZ§||2 <e —x;||2

Wi = W, —aVF(w) Y-LY16=  [ur— x| < O(ﬁ)
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Proof Sketch Il

*
X(I

.\ Lemma 2

O (Fa=w7z)

X*

Gradient descent on penalty function hq (x¢):

eyT(348) /4 I

Wi =ur — 1-Vhe(u) = ||uT—xZ§||2 <e —x;||2

Wi = W, —aVF(w) Y-LY16=  [ur— x| < O(ﬁ)

* * * * 052 1_:6_2
= [lxi = x"|[* = [x% — ur +ur - x ”23(9(@):0(%)

Lemma 2 v
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More quantizers

A EQx)x]=x & E[|Q(x)— x|? Ix] <o® for all x
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More quantizers

A EQx)x]=x & E[|Q(x)— x|? Ix] <o® for all x

AL EQRI =x & E[IQG) — x| [x] <’ x> forall x
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More quantizers

A EQx)x]=x & E[|Q(x)— x|? Ix] <o® for all x

AL EQRI =x & E[IQG) — x| [x] <’ x> forall x

Theorem
Under Al,2,3,4', the same rate is achieved. J
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More quantizers

A EQx)x]=x & E[|Q(x)— x|? Ix] <o® for all x

AL EQRI =x & E[IQG) — x| [x] <’ x> forall x

Theorem
Under Al,2,3,4', the same rate is achieved. J

o Example: Low-precision Q.

||
[

P (x) = ||| - sign(zi) - &i(x) & &i(x) is a Bernoulli r.v. with parameter
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More quantizers

A EQx)x]=x & E[|Q(x)— x|? Ix] <o® for all x

AL EQRI =x & E[IQG) — x| [x] <’ x> forall x

Theorem
Under Al,2,3,4', the same rate is achieved. J

o Example: Low-precision Q.

P (x) = ||| - sign(zi) - &i(x) & &i(x) is a Bernoulli r.v. with parameter ||E:|||
+
< |-
+
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More quantizers

A EQx)x]=x & E[|Q(x)— x|? Ix] <o® for all x

AL EQRI =x & E[IQG) — x| [x] <’ x> forall x

Theorem
Under Al,2,3,4', the same rate is achieved. J

o Example: Low-precision Q.

P (x) = ||| - sign(zi) - &i(x) & &i(x) is a Bernoulli r.v. with parameter ||E:|||
+ ]
- 0
x= |1 <5 Ikl
+ 0
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More quantizers

A EQx)x]=x & E[|Q(x)— x|? Ix] <o® for all x

AL EQRI =x & E[IQG) — x| [x] <’ x> forall x

Theorem
Under Al,2,3,4', the same rate is achieved. J

o Example: Low-precision Q.

P (x) = ||| - sign(zi) - &i(x) & &i(x) is a Bernoulli r.v. with parameter ||E:|||
+ ]
- 0
x= |1 <5 Ikl
+ 0

[1-bit SGD, Seide et al., 14], [QSGD, Alistarh, et al.,’17]
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Numerical results: synthetic data

o Decentralized quadratic: minkere f(x) = > 1, %XTAZ'X +b/x, p=20

o Network: Erdés-Rényi graph, n = 50 nodes, connectivity prob. p. = 0.35

o Weight matrixx W =1 — mL where L is the Laplacian
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Numerical results: synthetic data

o Decentralized quadratic: minkere f(x) = > 1, %XTAZ'X +b/x, p=20
o Network: Erdés-Rényi graph, n = 50 nodes, connectivity prob. p. = 0.35

o Weight matrixx W =1 — mL where L is the Laplacian

10" T T T 0.5

= 0 (7) = -0 (72)

® ] -p. = 0.35

L L epe = 0.5

X X [<-complete graph|
= = oaf

® %

| |
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x X

& =
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50 200 800 3200 12800 5 200 800 3200 12800
T T
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Numerical results: total communication cost

o Decentralized least squared: minxerr f(x) = >, £ [|[Aix —b; II?
o Normal data-set p = 200, Erdés-Rényi n = 50, p. = 0.35, b = 64

o Quantizer: Low-precision Q.: Q" (x) = ||x|| - sign(z:) - &i(x,5), s =1,2,---
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Numerical results: total communication cost

o Decentralized least squared: minxerr f(x) = >, £ [|[Aix —b; II?
o Normal data-set p = 200, Erdés-Rényi n = 50, p. = 0.35, b = 64

o Quantizer: Low-precision Q.: Q" (x) = ||x|| - sign(z:) - &i(x,5), s =1,2,---

# quantization  # iterations code length communication cost
levels (x10%) per vector (bits) (bits) (x108)
s=1 614.2 216.9 66.6
s=10 11.69 678.2 3.96

s* =50 2.3 949.8 1.09
s="T0 2.14 1037 1.11

communication cost to reach 0.01 of the optimal
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Numerical results: total communication cost

o Decentralized least squared: minxerr f(x) = >, £ [|[Aix —b; II?
o Normal data-set p = 200, Erdés-Rényi n = 50, p. = 0.35, b = 64

o Quantizer: Low-precision Q.: Q" (x) = ||x|| - sign(z:) - &i(x,5), s =1,2,---

# quantization  # iterations code length communication cost
levels (x10%) per vector (bits) (bits) (x108)
s=1 614.2 216.9 66.6
s =10 11.69 678.2 3.96

[s* =50 2.3 949.8 1.09]
s=170 2.14 1037 1.11

communication cost to reach 0.01 of the optimal
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Conclusion

@ We considered the attack that the adversary reduces communication bandwidth on
the links, and proposed an exact decentralized gradient decent algorithm for
quantized communications.

@ Many interesting directions to continue:
o Numerical study for IEEE 39-bus power network is ongoing.
o best quantizer?
o adversarial nodes?
o link failures?

e most resilient network topology?
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